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Abstract

This paper develops a model of dynamic pricing with boundedly rational con-
sumer search. Consumers observe one price, can choose to engage in costly
search to learn the other prices, and then purchase from the firm with the low-
est observed price. Each consumer searches only if the observed price exceeds
their dynamically tuned reservation price. Firms optimize given the current
distribution of reservation prices. Short run pricing is characterized by Edge-
worth cycles. Rather than resetting as a mixed strategy, each cycle resets when
the firm with the larger installed base relents by monopolizing its residual de-
mand. The both the lower and upper bounds of the cycles move with consumer
search, though not necessarily in the same direction. Whether these cycles per-
sist in the long run or the pricing dynamic converges to Diamond, Bertrand, or
a kinked-demand equilibrium depends on exogenous conditions that we outline.
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1 Introduction

The dynamic pricing and consumer search literatures introduced several well-known equi-

libria and paradoxes into industrial organization. From the consumer search literature

(Diamond, 1971; Stahl, 1989), the Diamond paradox emerged.1 From the dynamic pricing

literature, three patterns of interest emerged: the Bertrand paradox, the kinked-demand

equilibrium, and Edgeworth price cycles (Maskin and Tirole, 1988). By integrating bound-

edly rational consumer search dynamics with price competition, this paper shows that

Edgeworth cycles offer a link between the the established equilibrium patterns. Short-run

pricing is characterized by Edgeworth cycles, which persist in the long run if consumers

are not sufficiently discouraged from search. Otherwise, there is convergence via contract-

ing Edgeworth cycles to a kinked demand equilibrium, either at the monopoly price (the

Diamond paradox) or the search cost.

Our model imports tools from evolutionary game theory and blends Stahl’s (1989) static

framework of undirected consumer search with Maskin and Tirole’s (1988) dynamic frame-

work of sticky prices. We adapt these ideas into a continuous time setting in which both

consumers and firms are boundedly rational.2 With a few notable exceptions, the tra-

ditional approach has consumers form rational expectations about the firms’ equilibrium

price distributions and then search if the expected savings exceeds the cost of search (a

reservation price equilibrium).The formation of such expectations is generally untenable as

consumers often lack the necessary knowledge of the firms’ production processes or pricing

policies. A literature has also emerged studying non-reservation price equilibria.3

1The literature on undirected consumer search (Stigler, 1961) and clearinghouses (Salop and Stiglitz,
1977) was born in opposition to common knowledge of pricing, studying firm and consumer behavior in
markets where consumers observe only a subset of the firms’ prices. Consumers may then engage in costly
search, either sequentially or all at once, to learn the remaining prices. See, e.g., Stahl (1989), Fershtman and
Fishman (1992), Benabou and Gertner (1993), Dana Jr. (1994), Bikhchandani and Sharma (1996), Anderson
and Renault (1999), Baye et al. (2006), Arbatskaya (2008), Yang and Ye (2008), Tappata (2009), Janssen
et al. (2011), Cabral and Fishman (2012), Garcia et al. (2017), Armstrong (2017), and Preuss (2023).

2See, e.g., Conlisk (1996), Blinder et al. (1998), Ellison (2006), Spiegler (2014), and Heidhues and Kőszegi
(2018) on the use of bounded rationality in industrial organization.

3Instead of assuming that consumers know the probability distribution of prices from which they’re
searching, Rothschild (1974) assumes that searchers learn about the distribution while they search it. Ben-
abou and Gertner (1993) studies search market equilibria with Bayesian learning (adaptive search and
strategic pricing). Bikhchandani and Sharma (1996) studies the optimal stopping rule when the distribution
of prices is unknown to searchers. Rauh (1997) studies search when agents have beliefs based on finitely
many moments of the distribution of prices and their past market experiences. Lewis (2011) assumes con-
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Instead, we model consumers as making their decisions according to a simple rule of thumb

and periodically adjusting their guiding rule via processes that do not require informa-

tional or cognitive burdens. In particular, we assume that consumers engage in search if

the observed price exceeds a consumer-specific reservation price, which is a combination

of a chosen threshold for acceptance together with an individual-specific random shock.

Consumers then update their thresholds by imitating the better performing strategies of

their peers. This contrasts our notion of reservation price with the typical notion (see, e.g.,

Anderson and Renault, 2018), where reservation prices are formed via rational expectations

over the distribution of prices. Over time, consumers adjust their thresholds according by

imitating better performing strategies of their peers.

We assume that firms observe the current distribution of consumers’ chosen thresholds,

but do not possess knowledge of the process by which the consumers adjust these choices.

With this limited knowledge, the firms choose their prices to maximize short term profits,

though the main results are (qualitatively) not sensitive to this assumption.4 Because

the shocks to consumers’ reservation prices are individual specific, each consumer searches

probabilistically from the perspective of the firms, with the probability of search (weakly)

increasing in the observed price. Each consumer is endowed with unit demand and will

either purchase one unit from the observed firm or engage in search and purchase one unit

from the firm with the lowest price.5

In this framework, the consumer dynamic can be simply characterized: consumers search

sumers form expectations of prices based on the observed prices during previous purchases. Parakhonyak
and Sobolev (2015) shows that consumers employ a random stopping rule and price dispersion persists when
do not have prior beliefs on the distribution of prices. Janssen et al. (2017) develops a Bayesian framework
where consumers form and update beliefs regarding the firms’ marginal costs. Additionally, Choi et al.
(2018) studies the situation in which prices are known but consumers search to learn about their valuation
of the good.

4This assumption allows us to isolate the short-run market dynamics that arise when firms react to cur-
rent profit opportunities. A fully forward-looking formulation would require dynamic optimization over the
evolutionary path of consumer search thresholds, creating a high-dimensional state space that is analytically
intractable (Weintraub et al., 2008). Modeling firms as myopic therefore clarifies the demand-side mechanism
driving non-stationary Edgeworth cycles. This approach follows a growing literature on bounded rationality
in industrial organization that highlights limited foresight and adaptive decision rules as realistic features
of firm behavior (e.g., Blinder et al., 1998; Camerer, 2003; Zbaracki et al., 2004; Ellison, 2006; Sandholm,
2010; Spiegler, 2014). Alternatively, we can think of the firms as facing significant capital constraints and
any forward-looking strategy that is distinct from the short-tern strategy must sacrifice current profits for
future profits, which the capital constrained firms cannot do.

5The results generalize to arbitrary (well-behaved) individual demand structures.
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more frequently (choose lower thresholds) when the difference in the firms’ prices exceeds

the cost of search and search less frequently (choose higher thresholds) otherwise. Though

somewhat obvious (but distinct from adaptive search models such as Lewis, 2011), this

dynamic has important implications for the evolution of prices and the potential for con-

vergence.

The short-run is characterized by Edgeworth cycles, a finding unique to the undirected

search literature. Each firm undercuts its competitor until one firm raises its price to

monopolize its residual demand, capturing only those consumers that do not search. The

process then repeats itself.6 In the long run, these Edgeworth cycles may persist or the

market may converge to the Diamond paradox or a kinked demand equilibrium at the

search cost. Edgeworth cycles, which are commonly observed in retail gasoline markets

(Castanias and Johnson, 1993; Eckert and West, 2004; Noel, 2007a, 2008; Wang, 2009;

Doyle et al., 2010; Zimmerman et al., 2012; Isakower and Wang, 2014), make it difficult

for consumers to observe or learn the distribution of prices. With price cycles, prices are

generally decoupled from marginal cost, making it less informative for search decisions. We

show that the upper bound of the cycle is generally not the monopoly price. The lower

bound is generally above both the marginal cost and the search cost, rendering each less

informative. Moreover, both the upper and lower bounds of the cycles shift with aggregate

search behavior (though not necessarily in the same direction), making learning from past

experiences difficult.

Our Edgeworth cycles differ from traditional Edgeworth cycles (Maskin and Tirole, 1988;

Wallner, 1999; Eckert, 2003) in a few important ways. First, the residual demand of the

higher-priced firm is nonzero because of the random nature of search, softening the incentive

to undercut. Second, when a firm relents after prices have been competed sufficiently low,

it does so deterministically and to its own benefit. Because there is residual demand for

the firm with the higher price, a firm relents because the residual profit exceeds that of

6Edgeworth cycles were first (informally) predicted by Edgeworth (1925), with the presence of capacity
constraints driving the emergence of cycles. The notion was formally examined by Shubik (1959), who found
that the equilibrium, while not characterized by cycles, involves price dispersion through mixed strategies.
See Vives (1993) for a detailed discussion of the non-existence of pure-strategy equilibrium and indeterminacy
of prices in Bertrand-Edgeworth games.
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undercutting its competitor. This is in contrast to Maskin and Tirole’s (1988) model,

wherein there is no residual demand, so a firm does not immediately benefit from relenting,

leading to a stochastic decision to relent as both firms hope the other will relent first.7

Thus, firms do not generally compete the price down to marginal cost.8

Nonzero residual demand provides a greater incentive to relent to the firm with the larger

installed base of consumers. This result provides a testable implication that larger firms

will tend to be the first to raise prices during price wars and is consistent with empirical

findings in gasoline markets, e.g., Noel (2007b), Atkinson (2009), and Isakower and Wang

(2014). Moreover, we can precisely characterize the point at which a firm will relent by

linking the search literature to the literature on capacity-constrained price competition via

Gelman and Salop’s 1983 judo price, which in this context is defined as the highest price a

firm’s competitor can set such that the firm would rather monopolize its residual demand

instead of continuing the price war. This linkage offers a unique interpretation of consumer

search as a soft capacity constraint in that lowering the price increases sales by less than

the amount dictated by the consumers’ demand.

Third, and in contrast to the models in the tradition of Varian (1980) or Maskin and

Tirole (1988), this model endogenizes how the intensity of competition evolves over time.

Rather than a fixed probability of searching or random variance in their search behavior,

consumers’ willingness to search responds to the current observed price. This mechanism

causes both the peak and trough of the Edgeworth cycle to shift with search activity,

as is observed in retail gasoline markets (Noel, 2007a). Empirically, this result implies

that measures such as price-comparison traffic, advertising, or price alerts should correlate

not only with the troughs of price cycles (as in Lewis and Marvel, 2011), but also with

their peaks; however, the correlation with peaks can be positive or negative. Thus, the

model provides a micro-foundation for time-varying competition intensity that is absent

from canonical search and cycling models. Lastly, the cycles in our model are aperiodic and

stochastic. The period length of the cycles is inherently random due to the nature of the

7Wallner (1999) finds a deterministic reset driven by cycles being exactly three steps in length, so firms
alternate on resets.

8Cycling with a trough above marginal cost is also observed in Wallner’s (1999) finite horizon model
(noted above) and Noel’s (2008) model with stochastic marginal costs.
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price stickiness: opportunities for price revisions are themselves random.

The convergence (or lack thereof) of prices and consumer search thresholds depends on the

difference between the peak (residual maximizer) and trough (judo price) of the Edgeworth

cycle when consumers are least likely to engage in search. If this gap is sufficiently large, nei-

ther prices nor the consumers’ search thresholds settle and aperiodic stochastic Edgeworth

Cycles persist. If, on the other hand, this gap between the judo price and residual maxi-

mizer is small, then consumers gradually adopt the highest thresholds and the Edgeworth

Cycles persist in a stable manner with fixed bounds. Consequently, if consumers search

sufficiently infrequently at the highest threshold, then the cycles shrink, converging to the

monopoly price: the Diamond paradox. There is also a special case (when setting the price

equal to the search cost maximizes residual profits given the maximum search threshold

by all consumers). Instead of converging to the Diamond paradox, prices converge to the

search cost. Taking the search cost to zero yields the Bertrand paradox, though through

random perturbations (as some consumers will search), prices will rise above zero, so the

Bertrand paradoix is not asymptotically stable, though it is Lyapunov stable.

The remainder of the paper is structured as follows. Section 2 presents the model. The

comparative statics and dynamics are presented in Section 3. We provide an analytical and

computational example in Section 4. Discussion and concluding remarks are provided in

Section 5. An online appendix provides additional results and expands upon the assump-

tions made in the model.

2 The Model

This section develops a continuous-time duopoly model with search in which firms compete

by choosing prices and consumers, endowed with thresholds influencing search decisions, up-

date those thresholds over time. Prices and thresholds are sticky: the firms’ and consumers’

opportunities to revise their strategies are stochastic and governed by Poisson processes.9

With this stochastic continuous time approach, the following two events can occur with

9The Poisson parameters (the rates at which the firms and consumers update) only affect the relative
likelihood of each event occurring. Hence, the results are independent of the parameters insofar as the
probability of each event occurring is distinguishable from zero.
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positive probability during any open interval of time: the firms update their prices multi-

ple times before consumers update their thresholds or consumers update their thresholds

multiple times before the firms update their prices.10

2.1 Preliminaries and Timing

There are two identical single-product firms competing in prices and a continuum of con-

sumers with unit mass and identical consumption preferences.11 A typical firm is indexed

by i. Time flows continuously and is indexed by t ∈ [0,∞). Denote by pt =
(
pt1, p

t
2

)
the

vector of firms’ prices at each time t. Let ξ denote a price that is not associated with any

particular firm. The firms have a constant marginal cost of production normalized to zero.

At each time t, market activities occur in four stages, where the first three stages are akin

to the Diamond-Stahl model of undirected search (at each t).

Date 0. Each firm, if given the opportunity to adjust its price via an indepen-

dent Poisson process with rate λF , selects its price from an ordered finite grid G =

{g0, g1, . . . , gM} to maximize its instantaneous profits.12 Otherwise, prices are un-

changed.

Date 1. Each consumer observes a single firm’s price and may search at cost c > 0

to learn the other firm’s price. The probability of a consumer observing price pti is

αi ∈ (0, 1).13 Let α1 = α ∈ (0, 1).

Date 2. After the search decision, each consumer purchases from the firm with the

lowest observed price ξ. When both firms set the same price, a searching consumer

purchases from the first observed price; i.e., she buys from firm i with probability αi.

10Though the model is cast in continuous time, it can be interpreted as a sequential model à la Maskin
and Tirole (1985) and Maskin and Tirole (1988); however, this requires introducing an extra mechanism for
consumer threshold revisions.

11Online Appendix A extends the model to N firms.
12For tractability and consistency with observed short-run pricing behavior, firms are assumed to be

myopic. That is, they optimize current profits without internalizing how present prices influence the future
distribution of consumer search thresholds, a high-dimensional state variable that renders full dynamic
optimization infeasible. See, e.g., Weintraub et al. (2008).

13For example, suppose that there is a city with two gas stations each located on opposite sides of the
city. It is unclear ex ante which side of the city a given driver will be on when needing to refuel. The driver
observes the price of the closest station. This assumption simplifies the analysis and notation, but does not
influence the dynamics or equilibrium outcomes. See Online Appendix A.2 for details.
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Date 3. Each consumer receives opportunities to update her threshold (detailed

below) according to an independent Poisson process with rate λC . We place no re-

strictions on the relative magnitudes of λC and λF insofar as the likelihood of any

party making a revision is distinguishable from zero.

The initial price vector p0 is exogenously fixed, though the equilibrium dynamics do not

depend on this starting value. Before proceeding, two remarks are in order.

2.2 Consumer Preferences and Search Strategies

At each instant, each consumer is endowed with unit demand and the stationary utility

function u(ξ) = 1 − ξ when purchasing a unit of the good at price ξ and u(ξ) = 0 when

not purchasing.14 We make the unit valuation assumption to normalize the monopoly price

at 1. The consumers’ indirect utility function is v(ξ, s) = u (ξ) − cs, where s = 1 if the

consumer searches and s = 0 otherwise.

The consumers’ search decision is governed by a simple rule of thumb: a consumer searches

if the observed price exceeds some reservation price. Each consumer is endowed with a

threshold on the ordered grid τ ∈ {τ0, . . . , τL}, where L ≥ 1.15 These thresholds correspond

to the consumers’ strategies. Denote by xt =
(
xt0, . . . , x

t
L

)
the mass of consumers endowed

with each threshold at time t. We assume x0k > 0 for all k. Otherwise, any k with x0k = 0

can be removed from the grid without any loss of generality.

At each time t, each consumer receives an independent random shock σt to her threshold

τ and then searches in that period if and only if the observed price ξ exceeds both the

shocked threshold τ + σt and the search cost c: ξ > max
{
τ + σt, c

}
.16 Let τ + σt denote

the reservation price, where any observed price ξ > τ +σt leaves that consumer dissatisfied

and willing to search.17 However, the consumer is still self-serving and recognizes that if

the price is less than the cost of search, then the savings from a lower price would not

14All subsequent results hold for both generic unit demands and downward-sloping demands q = D(ξ)
such that ξD(ξ) is strictly quasiconcave.

15The results generalize to the case of continuous thresholds by augmenting the model following Cheung
(2016) and Cheung and Wu (2018).

16The assumption that this shock is independent across consumers is unnecessary for the purposes of this
paper. It is, however, very plausible and guarantees that the expected profits coincide with actual profits.

17The stochastic behavior generated by σt is similar to that of the Bayesian model in Janssen et al.
(2017), where consumers form and update beliefs regarding production costs.
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justify the search. The shock σt is independent across time and distributed according to

the continuous CDF φ. A consumer that observes a price ξ will therefore search with

probability φ(ξ − τ)ι(ξ>c), where ι(ξ>c) is the indicator function for ξ > c.

This reservation price mechanism is distinct from the literature. In this model, reservation

prices follow a behavioral rule of thumb: consumers have some level of price sensitivity that

evolves over time, but also experience random shocks to their current sensitivity. Search

is then governed determined by the observed price compared to this shocked value. In the

literature, the reservation price equilibrium is generally derived from consumers forming

rational expectations over the distribution of prices (or quality). See, e.g., Varian (1980),

Wolinsky (1986), Stahl (1989), Baye et al. (2006), Chen (2024), Janssen and Williams

(2024). Alternative mechanisms in the literature include a stochastic minimax stopping

rule, where for high prices, consumers randomize between search and not (Parakhonyak

and Sobolev, 2015) and rational probabilistic search with Bayesian updating (Janssen et

al., 2017).18

While this reservation price framework yields the same search behavior as models with het-

erogeneous search costs at any fixed moment in time (a grid of reservation prices with search

only if the observed price exceeds the reservation price), the two differ in the dynamics. In

the canonical heterogeneous search cost literature (Salop and Stiglitz, 1977; Varian, 1980;

Wolinsky, 1986; Stahl, 1989), cross-sectional variation in search costs creates a fixed dis-

tribution of reservation prices and stationary mixed-strategy equilibria. Subsequent work

generalizes this to continuous heterogeneity in search costs (e.g., Moraga-Gonzalez et al.,

2017b,a; Nishida and Remer, 2018). While this creates an observational equivalence to het-

erogeneous search costs at any moment in time, our thresholds endogenously evolve over

time.

We assume that the CDF φ is strictly increasing on (0− τL, 1− τ0) (increasing the observed

price ξ strictly increases the probability of search for any threshold), though the density of

this distribution is unrestricted. Thus, the magnitude of the shock may be large enough

that a consumer with the highest possible threshold is dissatisfied with any positive price

18See Anderson and Renault (2018) for a survey.
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and a consumer with the lowest possible threshold may be satisfied with any price below

the monopoly price. This is not a particularly imposing assumption as the probability of

these events may be arbitrarily small.

As the probability of a random consumer with threshold τℓ searching after observing price

ξ is φ(ξ − τℓ)ι(ξ>c),

φ̄(ξ, x) =
L∑
k=0

φ (ξ − τk) ι(ξ>c)xk

denotes the probability that a random consumer searches after observing that price. Because

there are a continuum of consumers, φ̄(ξ, x) is equivalently the mass of consumers that search

after observing ξ. Note that φ̄(ξ, x) is strictly increasing in ξ on [c, 1], which consistent with

the empirical evidence from gasoline markets (Lewis and Marvel, 2011).19

The distribution of the consumers’ thresholds xt evolves as the consumers update their

individual strategies. At each revision opportunity, the consumer employs an imitation dy-

namic that imposes minimal informational burdens. When a consumer has the opportunity

to change her threshold, she is matched uniformly at random with another consumer. Con-

ditional on being matched with a consumer with threshold τℓ, a consumer with threshold

τk adopts τℓ with probability rkℓ. The overall probability that a consumer switches from

threshold τk to τℓ is thus ρkℓ = xℓrkℓ.

Given a pair of strategies, we assume that rkℓ > rℓk if and only if v(pt, s|τk) > v(pt, s|τℓ):

consumers are more likely to switch from the strategy that performs worse to one that

performs better than the reverse. The evolution of xt is defined by the following system of

differential equations for all k = 0, . . . , L

ẋtk =
L∑
ℓ=0

xtℓρℓk − xtk

L∑
ℓ=0

ρkℓ.

2.3 Firm Demand, Pricing, and Profits

We now construct each firm’s demand as a function of the prices and the distribution of

consumers’ thresholds. If firm i’s price is lower than its competitor’s price, then i serves

19We prove this and other supporting results in the Appendix.
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the consumers that initially observe pi along with all of the searching consumers. If the

two firms set the same price, then firm i will serve those consumers that initially observe

pi. Finally, if firm i does not have the lowest price, then it will serve only those consumers

that initially observe pi and do not search. Firm i’s demand is thus

Di (p, x) =


αi + (1− αi)φ̄(p−i, x) if pi < p−i

αi if pi = p−i

αi (1− φ̄ (pi, x)) if pi > p−i.

We refer to lower priced firm’s demand as the front-side demand and the higher priced

firm’s demand as the residual demand. The front-side profit πFi (p, x) and residual profit

πRi (ξ, x) are defined analogously:

πFi (p, x) = pi
(
αi + (1− αi)φ̄(p−i, x)

)
πRi (ξ, x) = ξαi (1− φ̄(ξ, x)) .

Note that there is positive residual demand facing the firm that does not have the lowest

price, even without the presence of capacity constraints. This demand is present due to

the stochastic nature by which consumers search. Some consumers will not search and

instead purchase at the higher price. Like the consumer search models in Varian (1980)

and Stahl (1989), the residual demand is independent of the low price, though in contrast

to these models, the front-side demand depends on the high price. As we show below, the

nonnegative residual demand yields distinct equilibrium behavior.

For any price p−i = gω ∈ G, denote by Ri(gω, x) firm i’s best response correspondence.

Observe that Ri constitutes a Markov strategy where the state is given by the competitor’s

current price gω and the current distribution of thresholds x.

3 Equilibrium

As the firm’s strategies depend only on the current state and the consumers’ revision pro-

tocol depends (at most) on the current prices and current state x, our solutions constitute

Markov perfect equilibria (MPE).20 We then explore how x evolves along the equilibrium

20In Online Appendix C.2, we informally discuss how the results extend to the case of forward-looking
firms, where Markov perfection is a more substantial condition.
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path. We will show below that first order stochastic dominance offers a natural way to

characterize this evolution. In this context, x first order stochastically dominates x′ if

k∑
ℓ=0

xℓ ≤
k∑
ℓ=0

x′ℓ

for all k = 0, . . . , L, and strictly so for at least one k.

3.1 Residual Maximizers, Judo Prices, and Best Responses

Define the set of residual maximizers as P̃ (x) := argmaxg∈G πRi (g, x), which is independent

of i as each firm’s residual profit function is a constant multiple of the other. Given the unit

demand and G, P̃ (x) is nonempty and any residual maximizer cannot exceed the monopoly

price of 1. Thus, all prices are henceforth restricted to be weakly below the monopoly price

(pti ≤ 1) as there is no justification for any firm to price above 1.

The equilibrium characterization is based on the judo price of each firm. Firm i’s judo price

is the highest price its competitor may set such that i prefers to monopolize its residual

demand rather than undercut.21 Formally,

p∗i (x) := max

{
gω ∈ G \ {g0} : gω−1(αi + (1− αi)φ̄(gω, x)) ≤ max

pi∈G
αipi(1− φ̄(pi, x))

}
.

Let ∥G∥ := maxω≥1 gω − gω−1 denote the norm of G, which we henceforth assume to be

sufficiently small. Under this assumption, we show in Lemma 2 (contained in the Appendix)

that p∗i (x) ∈ [c, ξm). We now characterize the firms’ best response correspondences.

Proposition 1. Firm i’s best response correspondence is

Ri(gω, x) =


{gω−1} if gω > p∗i (x)

{gω−1} ∪ P̃ (x) if gω = p∗i (x)

P̃ (x) if gω < p∗i (x).

21The term judo price originates in a model of entry with sequential pricing developed in Gelman and
Salop (1983). The authors draw an analogy between firm strategies and the martial art of judo by pointing
out that an entrant firm forces accommodation from the incumbent by setting a low price and limiting its
size, thereby incentivizing the incumbent to maintain a large profit margin at a higher price rather than
engaging in a price war.
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Proposition 1 demonstrates that a firm will undercut it’s competitor’s price unless that

price is below the judo price.22 Note that it is possible that a firm’s best response is to

set the same price as its competitor. In this case, its competitor’s price will be a residual

maximizer, and so it will be reflected in the term P̃ (x).23

As the judo price is a defining feature of the firms’ best responses, it will play a large role in

the equilibrium dynamics. Thus, we identify which firm has the lower judo price and how

each firm’s judo price changes with the distribution of consumer search thresholds.

Proposition 2. If αi >
1
2 , then p∗i (x) ≥ p∗−i(x), strictly so if p∗i (x) > c.

The firm with the larger installed base is less willing to engage in a price war because

having a larger installed base guarantees a greater residual demand and thus higher residual

profits. This result is analogous to the result found in studies of capacity constrained price

competition that the firm with the larger capacity has a higher judo price.24 The following

Proposition relates the judo price to the distribution of consumer thresholds.

Proposition 3. If x first order stochastically dominates x′, then p∗i (x) ≥ p∗i (x
′).

As more consumers adopt a higher threshold for search, the judo price increases and as

consumers search less frequently, the residual profit increases while the front-side profit

decreases, so a firm has less of an incentive to undercut its competitor.

The same relationship need not hold for the residual maximizers. The relationship between

P̃ (x) and x depends on the shape of φ. In special cases, P̃ (x) moves with p∗i (x).
25 The

residual maximizer determines how the market adjusts as the distribution of search thresh-

olds evolves. When P̃ (x) responds to shifts in x (which occurs when consumers respond to

the current observed price), variations in search behavior translate directly into movements

22In Online Appendix C.2, we show that under certain conditions a similar best response correspondence
can be constructed for forward looking firms.

23This statement is formally proven in Lemma 4 in the Appendix.
24See, e.g., Osborne and Pitchik (1986), Deneckere and Kovenock (1992), and Allison and Lepore (2025).
25Examples offered in Online Appendix B.1 and B.2 demonstrate that the residual maximizer can move

in either direction. We formalize conditions under which the residual maximizer moves with the judo price
in Online Appendix B.3.
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in firms’ demand and pricing incentives. Endogenizing consumer thresholds thus provides

a mechanism through which observable fluctuations in attention like those driven by adver-

tising intensity, platform traffic, or information shocks, map into changes in prices. This

allows the model to explain persistent variation in price dispersion and markups without

appealing to exogenous shifts in cost or demand fundamentals.

3.2 Equilibrium Dynamics

Consumers will gradually adopt higher search thresholds when search has a negative average

utility and will otherwise gradually adopt lower search thresholds. Define c∗(p) by

c∗(p) =

{
(1− α)(p2 − p1) if p1 < p2

α(p1 − p2) if p2 < p1.

For a given price vector p, c∗(p) represents the largest search cost such that search yields

positive expected utility.26

Proposition 4. Let p remain fixed over any interval of time containing t′ and t > t′. For

all such intervals,

(i) if c < c∗(p), then xt
′
first order stochastically dominates xt,

(ii) if c > c∗(p), then xt first order stochastically dominates xt
′
.

The case in which c = c∗(p) can be ignored as the grid can always be perturbed such

that there are no prices that satisfy this relationship. That the distribution of consumer

thresholds is always increasing or decreasing (under first order stochastic dominance) is

particularly useful because it implies that Proposition 4 characterizes the motion of the

firms’ judo prices over time (by Proposition 3) and thus the lower bound of the best response

(Propositions 1 and 2).

3.2.1 Stochastic Edgeworth Cycles

Equilibrium pricing consists of cycles of price wars in which firms drive down the price

to the point that one firm relents and raises its price, starting the cycle anew. Due to

26Formally, this expression is given by c∗(p) := sup {c ≥ 0 : v(min p, 1) > αv(p1, 0) + (1− α)v(p2, 0)}.
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Figure 1: Edgeworth cycles for a fixed distribution of thresholds x. For simplicity, we
assume a unique residual maximizer for the purposes of the figure.

the constantly changing consumer thresholds and stochastic nature of price stickiness, the

actual pattern of pricing is not cyclical in the classical sense: the bounds of the price war

are not constant. Nonetheless, the general pattern repeats and maintains the fundamental

characteristics of an Edgeworth cycle.

Define p∗(x) = max {p∗1(x), p∗2(x)} as the critical judo price. Consider an initial price vector

such that p0i > p∗−i(x) for both firms and suppose that the distribution of consumers’

thresholds were to remain fixed. Without loss of generality, assume that firm 2 has a

weakly larger initial share of consumers (α ≤ 1/2), and thus by Proposition 2 the higher

judo price. Hence, firm 2’s judo price is also the critical judo price. The Edgeworth cycle

proceeds as follows, with an example depicted in Figure 1:

1. Firm 1 sets a price just below p2 and will not adjust it until p2 changes.

2. Firm 2 sets a price just below p1 and will not adjust it until p1 changes.

3. Steps 1 and 2 repeat until the prices are reduced to the critical judo price p∗2(x).

4. Firm 2 relents and sets a price in P̃ (x) to maximize its residual profit.

5. Repeat this process from step 1.

During steps 1-3 of the cycle, the prices of the firms will be close enough that search will not
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be beneficial. Thus, Proposition 4 implies that consumers will be adopting higher search

thresholds, which by Proposition 3 implies that the firms’ judo prices will be increasing. If

these judo prices increase enough, then a firm that currently has the lowest price (just below

the other firm’s price) may skip to step 4 of the cycle and monopolize its residual demand.

While Proposition 2 guarantees that the firm with the larger initial share of consumers will

always relent first for a fixed distribution of consumer thresholds, changes in the distribution

can lead to the other firm relenting first. As consumers raise their thresholds and the judo

prices increase, the critical judo price may increase to a value above the current price. If

the firm with the smaller installed base relents first, then the other firm would also have

relented if it had received the opportunity to do so.

While appearing as a mixed strategy due to the stochastic timing of consumer behavior,

relenting (step 4) and resetting the Edgeworth cycle is a pure strategy. This pattern is in

contrast to typical models of Edgeworth cycles such as Maskin and Tirole (1988), Wall-

ner (1999), and Noel (2008). Differences in the relenting firm can be attributed to and

empirically identified as changes in consumer search behavior.

The equilibrium path and convergence (or lack thereof) depends on the parameters and

functional forms of the model, namely the search cost and distribution φ. This section

considers two conditions and the subsequent section analyzes their complements. Denote

by ek the distribution of consumer thresholds in which all consumers have threshold τk.

Condition 1 (C1). If pi = inf P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c < c∗(p).

C1 states that search is beneficial when all consumers have the highest possible threshold,

one firm charges the critical judo price, and the other firm charges the smallest residual

maximizer. C1 not only provides an explicit condition on the cost of search, but also

implicitly puts some structure on the profit functions (via φ) in that it requires p∗(eL) <

inf P̃ (eL).

The following Theorem demonstrates that the equilibrium pricing dynamic does not con-

verge under this condition and that the range of prices in the cycles is large enough to

induce search. Define p = p∗(e0) as the critical judo price when all consumers have the
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lowest search threshold and p̂ = inf P̃ (eL) as the smallest residual maximizer when all

consumers have the highest search threshold.

Theorem 1. Under C1, there exists a T > 0 such that:

(i) neither pt nor xt converge as t → ∞,

(ii) for all times t > T , pti ∈
[
p, 1

]
,

(iii) (xt, pti) → (e0, p) and (xt, pti) → (eL, p̂) infinitely many times.

Thus, the range of prices is at least [p, p̂] and the distribution of consumer thresholds varies

between the two extremes e0 and eL. Proposition 1 implies that a firm will eventually

choose a price that is just below its competitor’s price. When the grid is sufficiently fine,

the difference in prices is less than the cost of search so it cannot be beneficial to search. By

proposition 4, consumers gradually adopt higher search thresholds. Price stickiness implies

that, over time, prices will almost surely be stuck close together or that the time until a firm

relents from the price war will be sufficiently long such that the distribution of consumer

thresholds approaches eL.
27 At this point, the best response correspondence implies that

prices should cycle with a maximum price of at least p̂. C1 implies that immediately after

a firm relents, when the prices are p∗(eL) and ξ ∈ P̃ (eL), the cost of search is sufficiently

low so search is beneficial. Again, this will almost surely occur for long enough that the

distribution of consumer thresholds approaches e0, at which point the prices will cycle with

a lower bound of approximately p. Thus, the process cannot converge and these bounds

must be approached infinitely many times.

Condition 2 (C2). If pi = sup P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c < c∗(p).

Replacing C1 with the weaker C2 yields the following corollary to Theorem 1.

Corollary 1. Under C2, there exists a T > 0 and an equilibrium such that

27It merits mention that if λF − λC ≫ 0, then the probability of the consumer dynamic moving from the
two extremes becomes arbitrarily small.
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(i) neither pt nor xt converge as t → ∞,

(ii) for all times t > T , pti ∈ [p, 1], and

(iii) (xt, pti) → (e0, p) and (xt, pti) → (eL, p̂) infinitely many times.

C1 and C2 coincide if and only if P̃ (eL) is a singleton.
28 This result is informative, as Section

3.2.2 shows that an equilibrium exists in which the distribution of consumer thresholds

converges under the complement of C1 and all equilibria have this property under the

complement of C2. Hence, multiple equilibrium dynamics may exist for a range of search

costs if P̃ (eL) is not a singleton, though the pricing strategy is unique (Proposition 1).

The mechanism driving Theorem and Corollary 1 is fundamentally different than Maskin

and Tirole (1988) and others found in the literature. In Maskin and Tirole’s seminal work,

cycles arise from forward-looking best responses and mixed-strategy relenting among firms.

In contrast, the cycles here originate from demand-side bounded rationality: consumers’

evolving search thresholds create positive residual demand for the higher-priced firm, mak-

ing relenting a deterministic and profitable action that endogenously determines both its

timing and identity. The potential existence of multiple residual maximizers is also impor-

tant, as it produces distinct equilibrium paths and variation in cycle amplitude and persis-

tence that could vanish under a uniqueness assumption. Moreover, unlike earlier stationary-

cycle frameworks, whether operating under capacity-constraints (Edgeworth, 1925; Shubik,

1959; Osborne and Pitchik, 1986) or the dynamic mixed-strategy models of Maskin and

Tirole (1988), Wallner (1999), and Eckert (2003), the upper and lower bounds of the cycle

in our model move endogenously with consumer search behavior. This non-stationarity mir-

rors empirical evidence from retail gasoline markets, where price-cycle peaks and troughs

shift independently of cost movements (e.g. Noel, 2007a,b; Eckert and West, 2004; Wang,

2009; Doyle et al., 2010; Zimmerman et al., 2012; Isakower and Wang, 2014).

28The arguments made to prove this corollary are nearly identical to those made in Theorem 1 with one
key difference: G must be sufficiently fine such that for some neighborhood N (eL) of eL and all x ∈ N (eL),
sup P̃ (eL) ∈ P̃ (x) and the equilibrium needs to dictate that when a firm chooses a price pt ∈ P̃ (x), it will
choose pt = sup P̃ (eL).
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3.2.2 Limit Cycles, Kinked Demand Equilibria, and the Bertrand and Dia-
mond Paradoxes

When the conditions presented in the previous subsection are violated, the equilibrium

converges over time. There are two notions in which the dynamic may converge, depending

on the parameters of the model. First, Edgeworth cycles may persist indefinitely, but

with the range of the cycles shrinking in the limit to a fixed peak and trough (though

aperiodicity persists due to price stickiness). Second, there may be convergence of both

prices to the search cost in finite time, though occurrence of this dynamic requires severely

restrictive conditions. In either case, the distribution of consumer thresholds converges to

eL. Formally, the conditions considered here are as follows.

Condition 1′ (C1′). If pi = inf P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c > c∗(p).

Condition 2′ (C2′). If pi = sup P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c > c∗(p).

Condition 3 (C3). There exists a neighborhood of eL N (eL) such that P̃ (x) = {c} for all

x ∈ N (eL).

C2′ is the complement of C2 and C1′ is the complement of C1. While not immediately

obvious, C3 is a subcase of C2′.29 The following theorem characterizes the first type of

convergence in which the distribution of consumer thresholds converges to eL and price

cycles indefinitely under a smaller range than Theorem 1.

Theorem 2. Under C2′, there exists a T > 0 such that

(i) the distribution of consumer thresholds xt converges to eL as t → ∞,

(ii) for all times t > T , pti ∈ [p∗(eL), sup P̃ (eL)], and

(iii) pt → p∗(eL) and pti → ξ ≥ p̂ infinitely many times.

29To see why, note that since p∗i ≤ inf P̃ (x), under C3, p∗i (x) = c for each firm i and all x ∈ N (eL). It
follows that c∗(p∗(eL), sup P̃ (eL)) = 0, so c > 0 implies C2′.

18



Theorem 2 shows that in the long run, prices cycle indefinitely with a lower bound of

p∗(eL) and an upper bound between inf P̃ (eL) and sup P̃ (eL). If the firms’ prices are close

(|p1−p2| < c), then consumers do not benefit from searching, so the distribution of consumer

search thresholds will tend towards eL. Given price stickiness and the fact that firms will

set prices that are close until one firm relents and raises its price, the firms’ prices will

almost surely remain close for a sufficiently long period of time such that the distribution

of consumer thresholds approaches eL. At that point, the consumers search sufficiently

infrequently such that the gap that emerges following one firm relenting will never be large

enough to induce search. As such, the distribution of consumers’ thresholds will continue

to converge towards eL and the firms’ cycles will remain fixed.

Corollary 2. Under C1′, there exists a T > 0 and an equilibrium such that

(i) the distribution of consumer thresholds xt converges to eL as t → ∞,

(ii) for all times t > T , pti ∈ [p∗(eL), sup P̃ (eL)], and

(iii) pt → p∗(eL) and pti → ξ ≥ p̂ infinitely many times.

Thus C1′ is a sufficient condition for this type of convergence to occur. If P̃ (eL) is not

a singleton, then there is a range of search costs in which both C1′ and C2′ are satisfied.

For search costs in that range, there exists both convergent and nonconvergent equilibrium

paths. This multiplicity of equilibria can be ruled out by assuming φ is such that the

residual profit given x = eL, ξD(ξ)(1−φ(ξ− τL)), is strictly quasiconcave in ξ. The follow-

ing proposition demonstrates some limiting properties as the grid of consumer thresholds

becomes large.

Proposition 5. If τL is sufficiently large, then there is convergence to the Diamond Paradox

(pti → 1 as t → ∞).

This result is similar to the Diamond paradox that emerges in the dynamic model of undi-

rected consumer search in Diamond (1971) and the static model of Stahl (1989). The

difference lies in the mechanism. In this model, firms price so as to gradually discourage
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search, and as consumers search sufficiently infrequently, monopoly pricing becomes op-

timal. Once both firms reach this point, search ceases to be beneficial and the outcome

stabilizes. In contrast, the Diamond-Stahl mechanism relies on consumers forming rational

expectations over equilibrium price distributions; monopoly pricing emerges because both

sides anticipate that outcome.

Proposition 5 generalizes this logic by linking the Diamond-type outcome to the kinked-

demand equilibrium of Maskin and Tirole (1988). In Stahl (1989), convergence to monopoly

pricing and no search occurs when the exogenously determined proportion of searchers tends

to zero. In Maskin and Tirole (1988), convergence to a kinked-demand equilibrium follows

from the supply side: infinitely patient firms sustain monopoly pricing as a Markov perfect

equilibrium by internalizing the future cost of price wars. In contrast, convergence here

arises entirely from demand-side dynamics. Consumers’ search behavior is endogenously

driven by the firms’ pricing: as prices remain close, consumers reduce search intensity,

raising the lower bound of the cycles (Proposition 3). Under Condition 2, these adjustments

are insufficient to reverse the process, and prices gradually approach the monopoly level as

the distribution of thresholds converges to eL.

Lastly, the following theorem demonstrates that under condition C3, all equilibria are such

that the firms’ prices converge in finite time, with the distribution of consumers’ converging

over time to eL.

Theorem 3. Under C3, there exists a T > 0 such that xt → eL and firms will undercut

one another until pt1 = pt2 = ξ = c, and will remain at that price thereafter.

Under C3, given any distribution of thresholds, the consumers search at any price ξ > c

with sufficiently high probability, so the residual profit is always maximized by setting the

price equal to the search cost to induce consumers not to search. Thus given some initial

prices, the firms engage in a price war until the price is driven to the search cost, and

the firms never have the incentive to increase their prices. This result can be seen as a

Bertrand-like outcome; if we allow the search cost to tend to zero, then the equilibrium will

converge to marginal cost pricing, but will not remain as there will be random shifts in the
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search thresholds, allowing firms to raise their prices and receive positive profits.

Corollary 3. Under the conditions of Theorem 3, if c = 0, then for every T > 0, there

exists an ε > 0, η > 0, and T ′ > T such that pti ∈ (0, η) on t ∈ [T ′, T ′ + ε).

That is, the (limiting) Bertrand outcome is Lyapunov stable, though not asymptotically

stable.

4 Analytical Example

This section provides an analytical example and computational simulation to illustrate

Theorems 1 and 2 and Proposition 5. For this section, suppose that the distribution of

shocks σt is uniformly distributed between −1 and 1. Hence,

φ(ξ, τ) =
1 + ξ − τ

2
.

For expositional convenience, define τ̄(x) =
∑L

ℓ=1 xℓτℓ, so

φ̄(ξ, x) =
1 + ξ − τ̄(x)

2
.

Then,

argmax
ξ

αξ (1− φ̄(ξ, x))︸ ︷︷ ︸
πR(ξ,x)

=argmax
ξ∈G

ξ (1 + ξ − τ̄(x))

=
1 + τ̄(x)

2
. (1)

As the residual profits are strictly concave, P̃ (x) is unique and given by the g ∈ G nearest

to (1). Let g̃(x) ∈ G ∩ P̃ (x) denote the residual maximizer. Hence,

Di(p, x) =


αi + (1− αi)

(
1+p−i−τ̄(x)

2

)
if pi < p−i

αi if pi = p−i

αi

(
1−pi+τ̄(x)

2

)
if pi > p−i.

We can then specify the judo price as the largest gω that satisfies the minimum of the search

cost c and

gω−1

(
αi + (1− αi)

(
1 + gω − τ̄(x)

2

))
≤ αig̃(x)

(
1− g̃(x) + τ̄(x)

2

)
.
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Suppose that gω − gω−1 = δ for all ω ≥ 1 and G is sufficiently fine (δ is sufficiently small).

Then gω−1 = gω − δ and |g̃(x) − 1+τ̄(x)
2 | < ε for an arbitrarily small ε. Then, the judo

price is (approximately) given by the minimum of the search cost c and the largest gω that

satisfies

(gω − δ)

(
αi + (1− αi)

(
1 + gω − τ̄(x)

2

))
=

αi
8

(1 + τ̄(x))2 ,

which can be rewritten as(
1− αi

2

)
p∗(x)2 +

(
αi +

(
1− αi

2

)
(1− τ̄(x)− δ)

)
p∗(x)

= δ

(
αi +

(
1− αi

2

)
(1− τ̄(x))

)
+

αi
8
(1 + τ̄(x))2.

A standard implicit function theorem argument confirms Propositions 2 and 3.

Observe that as x → eL, g̃(x) → 1 and as x → e0, g̃(x) → 1
2 . Thus the peak of the cycles

varies between 1
2 and 1 and moves uniformly with x (with respect to first order stochastic

dominance). Similarly, the troughs of the cycles move with x uniformly (Proposition 3).

4.1 Computational Simulation

In this section, we conduct a computational simulation to visualize the main results of

Theorem 1 and Proposition 5. To conduct this simulation, we make a few revisions to the

model; particularly moving from continuous time to discrete time and from a continuum of

consumers to a finite population; however, these revisions (described below), still keep the

framework consistent with our setup in Section 2.

Suppose that G = {0, 0.01, 0.02, . . . , 0.99, 1} (δ = 0.01), and α = 0.6. The number of con-

sumers is set to 50. The simulation operates in discrete time as follows. In each period,

either a single consumer or single firm has the opportunity to revise their strategy. With

probability 0.5, a random consumer is drawn to update its search threshold and with prob-

ability 0.5, a random firm is given the opportunity to update its price. In the event a firm

i is revising, the firm best responds to the current state x and p−i according to Proposition

1. Consumer thresholds remain unchanged. In the event a consumer i is revising, they

observe firm 1’s price with probability α = 0.6 and firm 2’s price with complementary prob-

ability. The consumer receives a stochastic shock to their threshold given by the uniform
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(a) τ = {0, 1.5} and c = 0.02.
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(b) τ = {0, 1.5} and c = 0.05.
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(c) τ = {0, 2} and c = 0.02.

Figure 2: The short- and long-run dynamics. Panel (a) satisfies condition C1 (Theorem
1), Panel (b) satisfies condition C2′ (Theorem 2), and Panel (c) satisfies the
conditions of Proposition 5. The gray lines correspond to prices and the black
lines correspond to consumer thresholds.

distribution described above, and decide whether to search or not. A purchase decision is

then made. After purchasing, with probability 0.001, consumer i is replaced with a new

consumer with a random threshold, which simulates the continuum of consumers. With

complementary probability, consumer i is matched with a random consumer j, and with

probability vi/(vi + vj), adopts consumer j’s threshold, where vi vj are the consumers’

respective indirect utility functions. The process then repeats in the next period.
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Figure 2 illustrates the dynamics under two conditions: (a) τ = {0, 1.5} and c = 0.02, (b)

τ = {0, 1.5} and c = 0.05, and (c) τ = {0, 2} and c = 0.02. Under the first condition,

C1 is satisfied so the nonconvergence results of Theorem 1 emerge. There are persistent

cycles that fluctuate. Both the peak and trough of the cycle move together with x with

respect to first order stochastic dominance. Under (b), Condition C2′ is satisfied, yielding

persistent cycles in the limit with x → eL. Under (c), the highest threshold is enough that

the probability of search is zero, yielding the Diamond Paradox, though cycles persist in

the short run leading to the long run convergence at the monopoly price. The judo price

gradually shifts upward until both the judo price and residual maximizer converge to the

monopoly price.

5 Discussion and Concluding Remarks

By developing a model of undirected consumer search with firm competition, this paper

characterizes the resulting market outcomes and derives several empirically testable pre-

dictions, including the short- and long-run dynamics that arise from agents’ bounded ra-

tionality. The short-run dynamics take the form of stochastic Edgeworth cycles, which

largely persist in the long run except under specific conditions. For a given distribution

of consumer search thresholds, the firm with the larger installed base has a stronger in-

centive to monopolize residual demand rather than continue the price war. Consequently,

when firms can update prices more frequently than consumers can reevaluate their search

decisions, larger firms are more likely to end and reset the cycle by monopolizing residual

demand. This prediction is consistent with evidence from gasoline markets (Noel, 2007b;

Atkinson, 2009; Zimmerman et al., 2012; Isakower and Wang, 2014). Conditions C1, C2′,

and C3 determine long-run convergence. Although expressed in terms of the judo price,

residual maximizer, and search cost, these conditions can be traced back to the model’s

fundamentals, and convergence (or its absence) depends on exogenous factors.

The model offers a unified explanation for the distinct pricing regimes documented in Noel

(2007a), who identifies three patterns in retail gasoline markets: sticky pricing, Edgeworth

price cycles, and cost-based pricing. Each of these regimes corresponds to a specific theoret-

ical result in this paper: Edgeworth cycles to Theorems 1 and 2 and cost-based and sticky
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pricing to Theorem 3 and Proposition 5. Rather than relying on equilibrium selection, the

model explains observed variation across cities by potentially subtle differences in consumer

demand and search costs. A formal empirical analysis of this mechanism is left for future

research.

The bounded rationality of consumers has important implications. The model does not

coincide with Maskin and Tirole (1988), Eckert (2003), or Noel (2008), even if search costs

are zero or firms are forward-looking. Whenever prices equalize, consumers randomly shift

toward higher price thresholds, creating an incentive for firms to raise prices. Both equilibria

characterized by Maskin and Tirole involve firms setting identical prices for at least some

period. Thus, the underlying consumer dynamics in this model would induce a deviation

from their results that does not vanish in the limit.

While the firms are modeled as myopic, this assumption can be both behaviorally and

theoretically justified. The analysis focuses on short-run price dynamics rather than long-

run equilibrium refinement. In this environment, the firms’ behavior can be interpreted as

an adaptive best response to current profit opportunities. Forward-looking optimization

would require firms to internalize how their pricing decisions affect the evolution of the

entire distribution of consumer search thresholds, a high-dimensional state variable that

makes a fully dynamic programming approach analytically infeasible. Myopia isolates the

demand-side feedback mechanism driving the Edgeworth cycles. The assumption is also

consistent with the broader literature on bounded rationality in industrial organization,

which emphasizes the empirical relevance of limited foresight and adaptive decision rules in

competitive environments (e.g., Camerer, 2003; Blinder et al., 1998; Zbaracki et al., 2004;

Ellison, 2006; Sandholm, 2010; Spiegler, 2014). Empirically, such short-horizon pricing

behavior aligns with evidence from managerial pricing studies (Blinder et al., 1998; Zbaracki

et al., 2004), which show that firms frequently rely on adaptive rather than fully rational

forward-looking strategies. However, as we illustrate in Online Appendix C, the results are

not driven by this assumption.

A major implication of the model is that the Bertrand paradox does not emerge as an

equilibrium outcome when the cost of search tends to zero. This result demonstrates the
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asymptotic instability of the Bertrand outcome, which occurs only under highly specific

assumptions and is overturned by infinitesimal perturbations. Marginal-cost pricing cannot

persist even with arbitrarily small search costs, since consumers have no incentive to search

when prices approach marginal cost. Over time, random shifts in the distribution of price

thresholds (Proposition 4) allow firms to earn positive profits. Hence, the Bertrand outcome

is only a transient feature of the degenerate case with exactly zero search costs.

The level of the search cost does not affect the qualitative nature of the results as long as it

remains positive and the pricing grid is sufficiently fine. Search cost matters only insofar as

it determines whether search has positive or negative expected value. Its primary influence

is on the rate at which the process evolves. Because the probability that a consumer adopts

a strategy increases with the expected payoff from that strategy, a higher search cost reduces

the expected value of search in all states. This accelerates consumers’ increases in thresholds

during cycles and slows their lowering when the cycle resets.

Although the magnitude of search cost does not alter the qualitative results, the model offers

insight into its role in pricing incentives. Higher search costs accelerate convergence to higher

price thresholds and slow convergence to lower ones, so firms benefit when consumers search

less frequently. Moreover, both the critical judo price and the smallest residual maximizer

are bounded below by the search cost. Firms can therefore increase profits by raising the

effective cost of search through obfuscation (Ellison and Ellison, 2009; Ellison and Wolitsky,

2012). When binding, such as when the judo price equals the search cost or under Condition

3 and the assumptions of Theorem 3, firms can strictly benefit from actions that increase

c, provided these actions are not excessively costly.

Finally, most models of undirected search include a fraction of “shoppers” consumers who

either face zero search cost or are exogenously informed of firms’ prices. Because this

paper’s goal is to weaken the standard rationality assumptions and study boundedly rational

dynamics, such an inclusion would be inappropriate here. Nevertheless, the implications are

straightforward. Shoppers increase the share of consumers who search given any observed

price. Their inclusion is equivalent to introducing a negative bias in each consumer’s price

threshold. If the fraction of shoppers is sufficiently large, the conditions of Theorem 1
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hold, leading to perpetual cycling of prices and thresholds. If the fraction is small, the

conditions of Theorem 2 and Proposition 5 may still apply, yielding long-run convergence

to the Diamond paradox.

This result contrasts with Stahl (1989), who shows in a static rational-expectations model

that equilibrium prices vary continuously between the Bertrand and Diamond outcomes as

the fraction of shoppers moves from zero to one.30 Similarly, it differs from the theoretical

results of Pennerstorfer et al. (2020), who obtain comparable predictions to Stahl (1989).

However, the persistence of price dispersion in this model is consistent with the semipara-

metric empirical evidence in Pennerstorfer et al. (2020), where the degree of price dispersion

declines but does not vanish as the share of shoppers approaches zero or one.
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Appendix

Lemmas 1 and 2 are supporting results used throughout.

Lemma 1. Define X as the unit simplex in RL:

X :=

{
(x0, . . . , xL) ∈ RL+1 : xk ∈ [0, 1] for all k = 0, . . . , L and

∑L

k=0
xk = 1

}
.

. The following statements are true:

(i) φ̄(ξ, x) is continuous on [0, c) ∪ (c, ξm]×X,

(ii) φ̄(ξ, x) is strictly increasing in ξ on [c, ξm],

(iii) if x first order stochastically dominates x′, then φ̄(ξ, x) < φ̄(ξ, x′) for all ξ ∈ [c, ξm].

Proof of Lemma 1.

Proof. Statements (i) and (ii) follow immediately from the assumption on φ and the def-

inition of φ̄(ξ, x). Item (iii) is trivially true if ξ ≤ c. We now prove statement (iii).

Suppose that ξ > c and x first order stochastically dominates x′. By Abel’s lemma,

φ̄(ξ, x) =
∑L

k=0 φ(ξ − τk)xk can be rewritten as

φ(ξ − τL)−
L−1∑
k=0

(
k∑
ℓ=0

xℓ

)
(φ(ξ − τk+1)− φ(ξ − τk))

Hence, for distributions x and x′, φ̄(ξ, x) < φ̄(ξ, x′) if and only if

φ(ξ − τL)−
L−1∑
k=0

(
k∑
ℓ=0

xℓ

)
(φ(ξ − τk+1)− φ(ξ − τk))

< φ(ξ − τL)−
L−1∑
k=0

(
k∑
ℓ=0

x′l

)
(φ(ξ − τk+1)− φ(ξ − τk)),

which simplifies to

L−1∑
k=0

(
k∑
ℓ=0

(xℓ − x′ℓ)

)
(φ(ξ − τk+1)− φ(ξ − τk)) > 0.
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As (φ(ξ − τk+1) − φ(ξ − τk)) < 0 for all k = 0, . . . , L, it is sufficient that for each k =

0, . . . , L− 1,

L−1∑
k=0

k∑
ℓ=0

(xℓ − x′ℓ) =
L∑
k=0

k∑
ℓ=0

(xℓ − x′ℓ) < 0,

which is true if x exhibits first order stochastic dominance over x′.

Lemma 2. Suppose ∥G∥ < δ for some δ > 0. Then, c ≤ p∗i (x) < 1.

Proof of Lemma 2.

Proof. For ξ < c, observe that the front-side profits given prices p = (ξ, ξ) is πF ((ξ, ξ), x) =

αiξD(ξ). Since firm i’s residual profits at pi = c are

πRi (c, x) = αic > αiξ = πF ((ξ, ξ), x),

it must be that c ≤ p∗i (x) as the firm strictly prefers maximizing its residual demand rather

than undercutting at any ξ < c.

By the properties of φ, φ̄(1, x) > 0. Consider ξ ∈ P̃ (x) and note that

πFi ((1, 1), x) = αi + (1− αi)φ̄(1, x) > αi

≥ αiξ

≥ max
pi

αipi(1− φ̄(pi, x))

= max
pi

πR(pi, x),

Hence, p∗i (x) < 1.

The proof of Proposition 1 relies on the following three lemmas.

Lemma 3. Let gω∗(x) = p∗i (x). There exists a δ > 0 such that if ∥G∥ < δ, then gω∗(x) <

gM = 1.

Proof. Suppose to the contrary that gω∗(x) = gM = 1 and consider ξ ∈ P̃ (x). The proof

proceeds in two cases: ξ < 1 and ξ = 1.
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Case 1: ξ < 1. If ξ < 1, then 1 = gM > gM−1 ≥ ξ. Under this supposition,

gM−1(αi + (1− αi)φ̄(1, x)) < αiξ(1− φ̄(ξ, x)), (2)

by the definition of the judo price. Lemma 1(ii) implies that gω−1(αi + (1− αi)φ̄(gω, x)) is

weakly increasing in both ω and gω, so

gM−1(αi + (1− αi)φ̄(1, x)) ≥ gM−1D(gM−1)(αi + (1− αi)φ̄(gM−1, x))

≥ ξ(αi + (1− αi)φ̄(ξ, x))

≥ αiξ(1− φ̄(ξ, x)). (3)

By (2) and (3), αiξ(1− φ̄(ξ, x)) < αiξ(1− φ̄(ξ, x)), a contradiction.

Case 2: ξ = 1. Because gM−1 < gω∗(x) = gM = 1 by hypothesis, it follows from the

definition of the judo price that

gM−1(αi + (1− αi)φ̄(1, x)) < αi(1− φ̄(1, x)),

which when rearranged yields

1− gM−1 > gM−1
φ̄(1, x)

α(1− φ̄(1, x))
. (4)

Suppose that ∥G∥ < δ for some δ > 0. Then, gM−1 ≥ 1− δ. Hence, if (4) is satisfied, then

δ > (1− δ)
φ̄(1, x)

α(1− φ̄(1, x))
. (5)

The LHS of (5) is decreasing in δ while the RHS of (5) is increasing in δ. Taking δ → 1

yields 1 > 0 and taking δ → 0 yields

0 >
φ̄(1, x)

α(1− φ̄(1, x))
.

a contradiction. By continuity, there exists a δ′ such that there is a contradiction for all

δ ≤ δ′, so for ∥G∥ < δ′, gω∗(x) = p∗i (x) < gM = 1.

Lemma 4. There exists a small positive δ such that if ∥G∥ < δ and gω ∈ Ri(gω, x), then

gω ∈ P̃ (x).
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Proof. Suppose gω ∈ Ri(gω, x). Then,

max
pi∈G

αipi(1− φ̄(pi, x)) ≤ αigω

and

gω−1(αi + (1− αi)φ̄(gω, x)) ≤ αigω, (6)

otherwise it must be that gω /∈ Ri(gω, x). Define gψ ∈ G \ {gM} such that gψ ≤ c < gψ+1,

noting that φ̄(ξ, x) = 0 for all ξ ≤ gψ. There are two cases to consider: (i) gω ≤ gψ and (ii)

gω > gψ.

Case 1: gω ≤ gψ. Then, φ̄(gω, x) = 0, so

max
pi∈G

αipi(1− φ̄(pi, x)) ≤ αigω = αigω(1− φ̄(gω, x))

≤ αigψ(1− φ̄(gψ, x))

≤ max
pi∈G

αipi(1− φ̄(pi, x)),

confirming the supposition. Thus, if gω ∈ Ri(gω, x), then gω ∈ P̃ (x).

Case 2: gω > gψ. Rearranging (6) yields

φ̄(gω, x) ≤
αi

1− αi
(gω − gω−1) ⇐⇒ δ ≥ gω − gω−1 ≥

1− αi
αi

φ̄(gω, x). (7)

Choose δ such that

δ <
1− αi
αi

φ(c− τL).

Hence, if ∥G∥ < δ, then (7) implies that φ̄(gω, x) < φ(c − τL), a contradiction. Thus, it

cannot be that gω > gψ, so the lemma holds.

Lemma 5. If gω = p∗i (x), then gω−1 ∈ Ri(gω, x).

Proof. Suppose that gω = p∗i (x). Because p∗i (x) ∈ G, it must be that

gω−1(αi + (1− αi)φ̄(gω, x)) = max
pi∈G

αi(1− φ̄(pi, x)).

By Lemma 4, gω ∈ Ri(gω, x) implies that gω ∈ P̃ (x), so gω−1 ∈ Ri(gω, x).
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Proof of Proposition 1.

Proof. Suppose that ∥G∥ < δ < c. Then g0(1 − φ̄(g1, x)) = 0, while there is some g ∈ G

with g ∈ (0, c) guaranteeing that

max
pi∈G

αipi(1− φ̄(pi, x)) ≥ g > 0.

By Lemmas 3 and 5,

gω∗(x)−1(αi + (1− αi)φ̄(gω∗(x), x)) = max
pi∈G

αipi(1− φ̄(pi, x)),

Thus, Ri(gω, x) ⊃ {gω−1, gω} ∪ P̃ (x).

For Ri(gω, x) to be as in the statement of the proposition, two properties must be satisfied:

(i) if gω ∈ Ri(gω, x), then gω ∈ P̃ (x), and (ii) if gω = p∗i (x), then gω−1 ∈ Ri(gω, x). The

fact that P̃ (x) ⊂ Ri(gω, x) for gω ≤ p∗i (x) and gω−1 ∈ Ri(gω, x) for gω > p∗i (x) follows

directly from the construction of p∗i (x) and the fact that gω−1(αi + (1 − αi)φ̄(gω, x)) is

strictly increasing in ω. Lemmas 4 and 5 prove properties (i) and (ii), respectively.

Proof of Proposition 2.

Proof. As each p∗i (x) ≥ c, the result holds trivially if p∗−i(x) = c. Suppose that p∗i (x) ∈ (c, 1).

By the continuity of φ̄(ξ, x) on (c,∞)×X, πF−i(p
∗
−i(x), x) = πR−i(x). That is,

p∗−i(x)(α−i + (1− α−i)φ̄(p
∗
−i(x), x)) = max

p−i

α−i(1− φ̄(p−i, x)).

Define the function

f(ξ, α) = ξ(α+ (1− α)φ̄(ξ, x))−max
ζ

αζ(1− φ̄(ζ, x)),

so that p∗−i(x) is defined (for sufficiently small ∥G∥ and possibly by a small perturbation of

G) by f(p∗−i(x), α−i) = 0. Note that f(ξ, α) is strictly increasing in ξ. It therefore suffices

to show (by the implicit function theorem) that f(ξ, α) is decreasing in α:

∂

∂α
f(ξ, α) = ξ(1− φ̄(ξ, x))−max

ζ
ζ(1− φ̄(ζ, x)) ≤ 0.

35



If α−ip
∗
−i(x)(1 − φ̄(p∗−i(x), x)) = maxζ αζ(1 − φ̄(ζ, x)), then by definition, p∗−i(x) ∈ P̃ (x).

Thus

p∗−i(x)(α−i + (1− α−i)φ̄(p
∗
−i(x), x)) = α−ip

∗
−i(x)(1− α−iφ̄(p

∗
−i(x), x)),

which holds only if φ̄(p∗−i(x), x) = 0, which requires p∗−i(x) < c. Because p∗−i(x) > c,

∂
∂αf(ξ, α) < 0. Hence, p∗i (x) > p∗−i(x).

Proof of Proposition 3.

Proof. Suppose that ∥G∥ < δ, where δ > 0 is sufficiently small such that each firm’s best

response correspondence is as in Proposition 1 and suppose that x first order stochastically

dominates x′. Lemma 1(iii) implies that φ̄(ξ, x) ≤ φ̄(ξ, x′) for all ξ. Thus, it follows that

for all gω ∈ G,

gω−1(αi + (1− αi)φ̄(gω, x)) ≤ gω−1(αi + (1− αi)φ̄(gω, x
′))

and

max
pi∈G

αipi(1− φ̄(pi, x)) ≥ max
pi∈G

αipi(1− φ̄(ξ, x′)).

If

gω−1(αi + (1− αi)φ̄(gω, x
′)) ≤ max

pi∈G
αipi(1− φ̄(pi, x

′)), (8)

then

gω−1(αi + (1− αi)φ̄(gω, x)) ≤ max
pi∈G

αipi(1− φ̄(pi, x)). (9)

Therefore

max

{
gω ∈ G \ {g0} : gω−1

(
αi + (1− αi)φ̄(gω, x

′)
)
< max

pi
αipi

(
1− φ̄(pi, x

′)
)}

≤ max

{
gω ∈ G \ {g0} : gω−1 (αi + (1− αi)φ̄(gω, x)) < max

pi
αipi (1− φ̄(pi, x))

}
,

and so by definition, p∗i (x) ≥ p∗i (x
′).

Thus, p∗i (x) ≥ p∗i (x
′). Furthermore, the same argument is valid given strict inequalities in

(8) and (9).
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Proof of Proposition 4.

Here, we prove the formal statement: suppose that pt = p for all t ∈ [T, T + ε) for any T

and ε > 0. For all t, t′ ∈ [T, T + ε) with t > t′, it follows that

(i) if c < c∗(p), then xt
′
first order stochastically dominates xt,

(ii) if c > c∗(p), then xt first order stochastically dominates xt
′
.

Proof. First, note that the case in which c = c∗ (p) can be ignored, as the grid may be

perturbed so that no prices satisfy this relationship. Let pt = p for all t ∈ [T, T + ε).

By the definition of c∗(p), search has a negative expected payoff if and only if c > c∗(p).

Consequently, a consumer’s expected payoff is strictly increasing in her threshold τ when

c > c∗(p) as the probability of search is decreasing in the threshold τ .

Suppose c > c∗(p). Then rkℓ > rℓk if and only if k < ℓ because search is not profitable when

c > c∗(p). Recall that the net flow of xt is

ẋtk =
∑

ℓ
xtℓρℓk − xtk

∑
ℓ
ρkℓ

= xtk
∑

ℓ
xtℓ(rℓk − rkℓ). (10)

We now show that for all t, t′ ∈ [T, T + ε) with t > t′,∑k

ℓ=0
xtℓ ≤

∑k

ℓ=0
xt

′
ℓ

for all k = 0 : L. It is sufficient to show that, for all a = 0 : L,∑a

k=0
ẋtk ≤ 0.

For all a = 0 : L and by (10),∑a

k=0
ẋtk =

∑a

k=0
xtk
∑

ℓ
xtℓ(rℓk − rkℓ)

=
∑a

k=0

∑a

ℓ=0
xtkx

t
ℓ(rℓk − rkℓ)︸ ︷︷ ︸

=0

+
∑a

k=0

∑L

ℓ=a+1
xtkx

t
ℓ(rℓk − rkℓ)

=
∑a

k=0

∑L

ℓ=a+1
xtkx

t
ℓ(rℓk − rkℓ).

As argued above, rℓk > rkℓ for all ℓ = a+ 1 : L and all k = 0 : a < ℓ. Hence,∑a

k=0
ẋtk =

∑a

k=0

∑L

ℓ=a+1
xtkx

t
ℓ(rℓk − rkℓ) < 0,
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completing this case. The proof for c < c∗(p) proceeds identically.

The following Lemma is used to prove Theorem 1.

Lemma 6. Under C1, there exists a δ > 0 such that if ∥G∥ < δ, then there exists a

neighborhood N (eL) of eL such that c < c∗(p) for all x ∈ N (eL), where pi = inf P̃ (x) and

p−i = p∗i (x) = p∗(x) is the critical grid-constrained judo price.

Proof. First, we prove that there exists a neighborhoodN (eL) of eL such that P̃ (x) = P̃ (eL)

for all x ∈ N (eL). Take g ∈ P̃ (eL) and define

∆ = πRi (g, eL)− max
g′∈G\P̃ (eL)

πRi (g
′, eL)

as the difference between the maximal constrained residual profits and the second-best.

Because πRi is continuous in x, there exists a neighborhood N (eL) of eL such that

πRi (g, x) >πRi (g, eL)−
∆

2

πRi (g
′, x) <πRi (g

′, eL) +
∆

2

for all g′ ∈ G \ P̃ (eL) and all x ∈ N (eL). Therefore, π
R
i (g, x) > πRi (g

′, x) for all x ∈ N (eL)

and g′ ∈ G \ P̃ (eL). Hence, g ∈ P̃ (x) and P̃ (x) = P̃ (eL). As eL first order stochastically

dominates all x ∈ X, p∗(x) ≤ p∗(eL) for all x ∈ X by Proposition 3.

We now prove that, for all x ∈ N (eL), c < c∗(p) when pi = inf P̃ (x) and p−i = p∗i (x) =

p∗(x). By C1, c < min{c∗((p∗(eL), inf P̃ (eL))), c
∗((inf P̃ (eL), p

∗(eL)))}. Recall that c∗(p) is

defined by

1−min p− c∗(p) = 1− αp1 − (1− α)p2. (11)

Suppose that p1 ≤ p2. Then, (11) can be rearranged as

c∗(p) = (1− α)(p2 − p1),

which by inspection is decreasing in p1 = min p and increasing in p2 = max p. Thus, (11) is

decreasing in min p and increasing in max p.
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Set ε′ = c∗(p) − c for the prices given in the statement of the Lemma and define x in

the closure of N (eL) such that x is first order stochastically dominated by all x ∈ N (eL).

Fix ε > 0. Define δ(ε) such that if both |pi − p′i| ≤ δ(ε) and |p−i − p′−i| ≤ δ(ε), then

|c∗(p) − c∗(p′)| < ε. By Proposition 1, δ′ can be chosen such that if ∥G∥ < δ′, then

|p∗(x) − p∗(eL)| ≤ δ(ε). Because c∗(p) is decreasing in min p, a well-defined neighborhood

N (eL) exists for every ε′ such that

min{c∗(p∗(x),min P̃ (x)), c∗(min P̃ (x), p∗(x))}

> min{c∗((p∗(eL), inf P̃ (eL))), c
∗((inf P̃ (eL), p

∗(eL)))} − ε. (12)

Assigning ε < min{c∗((p∗(eL), inf P̃ (eL))), c
∗((inf P̃ (eL), p

∗(eL)))}− c, which is well defined

by C1, implies that c < min{c∗(p∗(x),min P̃ (x)), c∗(min P̃ (x), p∗(x))} for all x ∈ N (eL)

and G such that ∥G∥ < δ′.

Proof of Theorem 1.

Proof. Suppose that ∥G∥ < δ < c, where δ is such that best response correspondence for

each firm is as stated in Proposition 1.

First, we prove statement (i) (the prices do not converge). To the contrary, suppose that

pt → (gω, gω′). Without loss of generality, assume that gω ≤ gω′ . By Proposition 1, for

some time T > 0, it must that (i) gω ≤ p∗2(x
t) for all t > T , (ii) gω′ ∈ P̃ (x), and (iii)

gω ∈ {gω′ , gω′−1}. As |pt1 − pt2| ≤ δ < c for all t > T , Proposition 4 implies that xt → eL as

t → ∞ because at such prices, ẋtL → 0 if and only if xL → 1. Consider two cases.

Case 1: gω = gω′ . In this case, it must be that gω ≤ p∗1(x
t) for all t > T . Because

p∗i (x) ≤ min P̃ (x) for all x ∈ X, p∗(xt) = min P̃ (xt) for all t > T . Hence,

min{c∗((p∗(xt),min P̃ (xt))), c∗((min P̃ (xt), p∗(xt)))} = 0 < c

for all t > T , which contradicts Lemma 6.

Case 2: gω = gω′−1. In this case, it must be that gω′ ≥ p∗1(x
t) for all t > T . It follows that

either p∗(xt) = gω or that p∗(xt) = gω′ for all t > T . Either way,

min{c∗((p∗(xt),min P̃ (xt))), c∗((min P̃ (xt), p∗(xt)))} ≤ δ < c
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for all t > T , which contradicts Lemma 6. Therefore, the prices do not converge.

Next, we prove statement (ii) (in the limit, prices are bounded). By Proposition 1, given

a distribution xt, neither firm i will ever choose a price pti < gω−1 when gω = p∗i (x).

Thus, by Propositions 1 and 3, neither firm i will ever choose a price below pti < gω−1

when gω = p∗i (e0). Set gω = p∗i (e0) and suppose that p∗i (e0) = p∗(e0). If pti = gω′ , then

pt−i ≥ gω′−1. As firm i will never choose a price pti < gω−1, then there will be some time T

such that firm i eventually chooses a price pti ≥ gω−1. It follows that for all times t > T ,

pti ≥ gω−1 and pt−i ≥ gω−2. Therefore, Proposition 1 guarantees that for sufficiently small

δ > 0, if ∥G∥ < δ, then pti ≥ p for both firms i and all t > T . That pti ≤ 1 for all t > T

follows directly.

Lastly, we prove statement (iii) (infinite cycles between e0 and eL). To prove this statement,

it is sufficient to show that for any ε′ > 0 and any neighborhoods N (e0) of e0 and N (eL)

of eL, for all T there is a positive probability that (a) xt ∈ N (eL) for some t > T , (b)

p
t′n
i → ξ′ ≥ p̂ − ε for some t > T , (c) xt ∈ N (e0) for some t > T , and (d) ptni → ξ ≤ p + ε

for some t > T . We will jointly demonstrate (a) and (b) followed by (c) and (d).

Proposition 1 dictates that at some time t, firms will set their prices such that pti = gω and

pt−i = gω−1 for some ω. Given such prices, Proposition 4 implies that the distribution of

consumer thresholds will be shifting toward eL.

If the prices are fixed at pti = gω and pt−i = gω−1 for some ω, then ẋtL → 0 if and only if

xL → 1. If these prices were to remain fixed, then xt → eL.

Let N (eL) be a neighborhood of eL. Define

T̃ = sup
p∈G2

sup
xT∈X

inf{t ≥ 0 : xT+t ∈ N (eL) given p}.

Given any time T , any prices gω and gω−1, and any xT ∈ X, it follows that if pti = gω

and pt−i = gω−1 for all t > T , then xT+t ∈ N (eL) for all t > T̃ . Given the stickiness of

pricing, for any prices pTi = gω, p
T
−i = gω−1, and any t′ > T̃ , there is a positive probability

that pT+ti = gω and pT+t−i = gω−1 for all t < t′. Thus, there is a positive probability that

xt ∈ N (eL) for some t > T .
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Choose N (eL) such that for all x ∈ N (eL), p
∗
i (x) = p∗i (eL) for each firm i and P̃ (x) ⊆ P̃ (eL)

(By Lemma 6, this neighborhood is well defined). If xT ∈ N (eL), define

T̃ (xT ) = inf
p∈G2

inf{t ≥ 0 : xT+t /∈ N (eL) given p}.

Then, given any time T such that xT ∈ N (eL), let Q denote the maximum number of

sequential price changes by the firms according to the best response correspondence that

are necessary to reach a pair of prices such that pi ∈ P̃ (x) and p−i = gω−1, where gω = p−i.

There is a positive probability that the firms are able to make Q sequential price changes

in the time interval (T, T + T̃ (xT )) and there is a positive probability that for either firm i,

for some time t > T , pti ≥ p̂.

Next, using Lemma 6, choose δ and N (eL) such that if ∥G∥ < δ and x ∈ N (eL), then

c < c∗(p), where pi = inf P̃ (x) and p−i = p∗i (x) = p∗(x). Given xT ∈ N (eL), there will be

some t > T where pt is such that c < c∗(pt). Let N (e0) be a neighborhood of e0 and define

T̃0 = sup
p∈G2

sup
xT∈X

inf{t ≥ 0 : xT+t ∈ N (e0) given p}.

Then given c < c∗(pT ), for any t′ > T̃0 there is a positive probability that the firms prices

remain fixed for all t ∈ [T, t), and thus that xT+t
′ ∈ N (e0).

Finally, choose N (e0) and δ such that for all x ∈ N (e0), p
∗(x) = p∗(e0). Then define for all

xT ∈ N (e0)

T̃0(x
T ) = inf

p∈G2
inf{t ≥ 0 : xT+t /∈ N (eL) given p}

and let Q0 be the maximum number of sequential price changes by the firms according

to the best response correspondence that are necessary to reach a pair of prices such that

pi = gω = p∗(x) and p−i ∈ {gω−1, gω+1}. Given any xT ∈ N (e0) there is a positive

probability that the firms are able to make Q0 sequential price changes in the time interval

(T, T + T̃0(x
T )), and thus that pti → p∗(eL) for each firm i for some t > T .

The following Lemma is used to prove Theorem 2.

Lemma 7. Under C2’, there exists a δ > 0 such that if ∥G∥ < δ, then there exists a

neighborhood N (eL) of eL such that c > c∗(p) for all x ∈ N (eL), where pi = sup P̃ (x) and

p−i = p∗i (x) = p∗(x).
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Proof. The proof of this lemma mirrors that of Lemma 6. By an analogous argument to

Lemma 6 there exists a neighborhood N (eL) of eL such that P̃ (x) = P̃ (eL). As in the proof

of Lemma 6, eL first order stochastically dominates all x ∈ X, so p∗(x) ≤ p∗(eL) for all

x ∈ X.

We now prove that, for all x ∈ N (eL), c > c∗(p) when pi = max P̃ (x) and p−i = p∗i (x) =

p∗(x). By C2, c > min{c∗((p∗(eL), sup P̃ (eL))), c
∗((sup P̃ (eL), p

∗(eL)))}. Fix ε > 0. Again,

define δ(ε) such that if both |pi− p′i| ≤ δ(ε) and |p−i− p′−i| ≤ δ(ε), then |c∗(p)− c∗(p′)| < ε.

By Proposition 1, δ′ can be chosen such that if ∥G∥ < δ′, then max P̃ (eL) ≥ sup P̃ (eL)−δ(ε).

Because c∗(p) is decreasing in min p and thus p∗(x) while max P̃ (x) = max P̃ (eL) for all

x ∈ N (eL),

min{c∗(p∗(x),max P̃ (x)), c∗(max P̃ (x), p∗(x))}

< {c∗((p∗(eL), sup P̃ (eL))), c
∗((sup P̃ (eL), p

∗(eL)))}+ ε.

Assigning ε < c−min{c∗((p∗(eL), sup P̃ (eL))), c
∗((sup P̃ (eL), p

∗(eL)))}, which is well defined

by C2′, implies that c > min{c∗(p∗(x),max P̃ (x)), c∗(max P̃ (x), p∗(x))} for all x ∈ N (eL)

and G such that ∥G∥ < δ′.

Proof of Theorem 2. We prove the following formalized statement of Proposition 5:

As τL → ξm − inf suppφ, p∗i (eL) → ξm and thus sup P̃ (eL) = p∗i (eL). Consequently, C2′

holds for sufficiently large τL. Furthermore for all ε > 0, there exists a τ̄ > 0, δ > 0, and

T > 0 such that if τL > τ̄ and ∥G∥ < δ, then all equilibria are such that pti > ξm − ε for

both firms i and all t > T .

Proof. Suppose that ∥G∥ < δ < c, where δ is such that the best response correspondences

are as stated in Proposition 1. We first show that xt → eL. By Proposition 1, there exists

a time T ≥ 0 such that pi = gω and p−i ∈ {gω, gω±1}. Hence, |pi − p−i| < c. Given price

stickiness, there is positive probability that these prices will remain in this interval until

some time T ′ > T . By proposition 4, for a sequence of times {tn} ⊂ [T ′, T ), xtn first order

stochastically dominates xtn′ for all n′ > n. As eL first order stochastically dominates all

x ∈ X, there exists a t′ ∈ [T ′, T ) such that a state xt
′ ∈ N (eL) is reached with positive
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probability, where N (eL) is chosen such that Lemma 7 applies. Lemma 7 and Proposition

4 imply that eL is an absorbing state. Hence, xt → eL.

Statement (ii) follows from an identical argument to the proof of statement (ii) of Theorem 1

but fixing xt ∈ N (eL). Statement (iii) then follows from the best response correspondences

of Proposition 1.

Proof of Proposition 5.

Proof. As τL → ξm − inf suppφ, ξm ≤ τL + σt for all σt. Hence, φ(ξm − τL) → 0 as

τL → ξm − inf suppφ. Given state x = eL and τL → ξm − inf suppφ,

πR(ξ, eL) = αiξ (1− φ(ξ − τL)) ≤ αi = πRi (1, eL)

Hence, P̃ (eL) = {1}. Therefore, the judo price is

p∗i (eL) = sup {ξ ≤ 1 : ξ (αi + (1− αi)φ(ξ − τL)) ≤ αi} .

Evaluating firm i’s front-side profits as pi → 1 and p−i = 1 yields

αi = (αi + (1− αi)φ(1− τL)).

Hence, p∗i (eL) = 1 = sup P̃ (eL). That C2 holds for sufficiently large τL follows immediately.

Suppose that ∥G∥ < δ < c so that each firm’s best response correspondence is as in Propo-

sition 1. By continuity, for every ε′ > 0, There exists a neighborhood N (1 − inf suppφ)

such that if τL ∈ N (1− inf suppφ), then p∗i (eL) = 1. Let τ̄ = infN (1− inf suppφ). Then,

for all τ > τ̄ , p∗i (eL) = 1.

As C2′ is satisfied, Theorem 2 implies that xt → eL. Hence, there exists a time T ≥ 0 such

that for all t > T , pti = 1.

Proof of Theorem 3.

Proof. Suppose C3 is satisfied and set δ sufficiently small such that the best response

correspondences are as in Proposition 1. By C3, given a neighborhood N (eL), p
∗(x) =

sup P̃ (x) = c for all x ∈ N (eL). As C3 implies C2, there exists a time T ≥ 0 such that
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xt ∈ N (eL) for all t ≥ T . For any prices pt = (pti, p
t
−i) ≥ (c, c), Proposition 1 implies

that the two firms will undercut each other at each revision opportunity until pt = (c, c).

Because P̃ (x) = {c} for all x ∈ N (eL), there exists a time T ′ ≥ T such that pt = (c, c) for

all t > T ′.
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