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Abstract

This paper studies a model of undirected consumer search with boundedly-
rational agents. Consumers observe one price, can engage in costly search to
learn the other prices, and then purchase from the firm with the lowest ob-
served price. Each consumer searches only if the observed price exceeds their
reservation price, which they dynamically update through one of two revision
protocols: myopic best responses or imitation. Firms myopically optimize given
the current distribution of reservation prices. Short run pricing is characterized
by Edgeworth cycles. Each cycle ends when the firm with the larger installed
base relents and monopolizes its residual demand. Convergence to the Diamond
paradox occurs only if consumers adapt to search sufficiently infrequently. Con-
vergence to a kinked demand equilibrium at the search cost can also occur, as
can convergence to the Bertrand paradox. The Bertrand paradox emerges only
temporarily when the search cost becomes arbitrarily small. Otherwise, prices
cycle indefinitely.
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1 Introduction

Over the past several decades, models of consumer search have made tremendous progress

in understanding the role of consumers in the market, broadly examining consumer choice

based on the information that is freely known and that which may be obtained via costly

search.1 With a handful of notable exceptions, models of undirected consumer search

(wherein consumers must incur costs to learn prices) often make use of at least one of

two quixotic assumptions: (i) that consumers possess equilibrium knowledge or (ii) that

consumers possess knowledge of firm processes such as pricing strategies.2 For example, con-

sumers do not observe the price, but know the probability distribution from which prices

are drawn. As has been noted by the authors that have established alternative assumptions

within their models, it is understood that these assumptions require consumers to possess

far more knowledge than can be reasonably expected.

While previous work has sought to limit the informational burden on consumers, we pro-

pose to additionally consider limitations on the cognitive burden.3 We import tools from

evolutionary game theory to model these limitations within a framework of dynamic price

competition with consumer search. Using this model, we completely characterize both

the short- and long-run pricing patterns of the firms and the search behavior of the con-

sumers. Our model blends Stahl’s (1989) static framework of undirected consumer search

with Maskin and Tirole’s (1988) dynamic framework of sticky prices. We adapt these ideas

1The literature on undirected consumer search (Stigler, 1961) and clearinghouses (Salop and Stiglitz,
1977) was born in opposition to common knowledge of pricing, studying firm and consumer behavior in
markets where consumers observe only a subset of the firms’ prices. Consumers may then engage in costly
search, either sequentially or all at once, to learn the remaining prices. See, e.g., Stahl (1989), Fershtman and
Fishman (1992), Benabou and Gertner (1993), Dana Jr. (1994), Bikhchandani and Sharma (1996), Anderson
and Renault (1999), Baye et al. (2006), Arbatskaya (2008), Yang and Ye (2008), Tappata (2009), Janssen
et al. (2011), Cabral and Fishman (2012), Garcia et al. (2017), Armstrong (2017), and Preuss (2023).

2Instead of assuming that consumers know the probability distribution of prices from which they’re
searching, Rothschild (1974) assumes that searchers learn about the distribution while they search it. Ben-
abou and Gertner (1993) studies search market equilibria with Bayesian learning (adaptive search and
strategic pricing). Bikhchandani and Sharma (1996) studies the optimal stopping rule when the distribution
of prices is unknown to searchers. Rauh (1997) studies search when agents have beliefs based on finitely many
moments of the distribution of prices and their past market experiences. Lewis (2011) assumes consumers
form expectations of prices based on the observed prices during previous purchases. Janssen et al. (2017)
develops a Bayesian framework where consumers form and update beliefs regarding the firms’ marginal costs.
Additionally, Choi et al. (2018) studies the situation in which prices are known but consumers search to
learn about their valuation of the good.

3See Ellison (2006) and Spiegler (2014) on the use of bounded rationality in industrial organization.
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into a continuous time setting in which both consumers and firms are boundedly rational.

While this paper studies the duopoly case, the results can be generalized to any finite num-

ber of firms.4 The traditional approach has consumers form rational expectations about the

firms’ equilibrium price distributions and then search if the expected savings exceeds the

cost of search. The formation of such expectations is generally untenable as consumers often

lack the necessary knowledge of the firms’ production processes or pricing policies. Instead,

we use an approach from evolutionary game theory and assume that consumers make their

decisions according to simple rules of thumb and periodically adjust their guiding rule via

processes that need not require substantial informational or cognitive burdens (Sandholm,

2010). To offer an illustration of our environment, consider a local retail gasoline market. A

consumer driving by a gas station observes a price and, based on two factors – their current

price sensitivity and a shock (their current fuel level), may decide to stop and refuel or keep

driving to the next gas station to see if the price is lower. Through communication with

other drivers over time (or based on their own experiences), consumers update their search

behavior to be more or less price sensitive.

The emergent market outcome in our model is varying repeated price wars (Edgeworth

cycles), a finding unique to the undirected search literature. Firms sequentially undercut

one-another until one firm decides to relent by increasing its price, restarting the price war.

Generally, these Edgeworth cycles persist in the long run unless consumers can learn to

search sufficiently infrequently. We fully characterize when these cycles persist and when,

in the long run, prices converge to well known equilibria including the Diamond paradox

(monopoly pricing with no search), a kinked demand equilibrium at the search cost, and

the Bertrand paradox (marginal cost pricing).

Edgeworth cycles, which are commonly observed in retail gasoline markets (Castanias and

Johnson, 1993; Eckert and West, 2004; Noel, 2007a, 2008; Wang, 2009; Doyle et al., 2010;

Zimmerman et al., 2012; Isakower and Wang, 2014), make it difficult for consumers to

observe or learn the distribution of prices. With price cycles, prices are generally decoupled

from marginal cost, making it less informative for search decisions. The upper bound of

4See Online Appendix A.1.
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the cycle need not (and generally is not) the monopoly price. The lower bound is generally

above both the marginal cost and the search cost, rendering each less informative. Moreover,

these bounds shift with aggregate search behavior, making learning from past experiences

difficult.

In particular, we assume that consumers engage in search if the observed price exceeds a

consumer-specific reservation price, which is a combination of a chosen threshold for accep-

tance together with an instantaneous, individual-specific random shock.5 Over time, the

consumers adjust their thresholds according to one of two common evolutionary dynamics:

imitation of superior strategies or the selection of a myopic best response to the current

state.6

We assume that firms observe the current distribution of consumers’ chosen thresholds,

but do not possess knowledge of the process by which the consumers adjust these choices.7

With this limited knowledge, the firms choose their prices to maximize short term profits.8

Alternatively, we can think of the firms as facing significant capital constraints and any

forward-looking strategy that is distinct from the short-tern strategy must sacrifice current

profits for future profits, which the capital constrained firms cannot do. Because the shocks

to consumers’ reservation prices are individual specific, each consumer searches probabilis-

tically from the perspective of the firms, with the probability of search (weakly) increasing

in the observed price. The implied tension between extracting surplus from consumers and

inducing consumer search endogenously generates downward sloping demand for each firm’s

good, independent of the structure of each individual consumer’s demand.

In this framework, the consumer dynamic can be simply characterized: consumers search

more frequently (choose lower thresholds) when the difference in the firms’ prices exceeds

the cost of search and search less frequently (choose higher thresholds) otherwise. While

by itself this is somewhat obvious, though distinct from adaptive search models such as

5See Janssen et al. (2017) for a discussion of consumer search with and without reservation prices.
6The qualitative results are unaffected by the choice of revision protocol. Only the rate of convergence

changes.
7Firms may observe these thresholds via simple surveys. Such surveys would not provide enough infor-

mation to infer the process by which consumer behavior changes.
8This assumption is discussed in more detail in Online Appendix C.1 and we discuss the extension to

forward looking firms in Online Appendix C.2.
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Lewis (2011), it has important implications for the characterization of the pricing dynamic

and its potential for convergence. As noted earlier, the short-run equilibrium dynamic is

characterized by Edgeworth cycles, where each firm undercuts its competitor until one firm

raises its price to monopolize its residual demand, capturing only those consumers that do

not search. The low price firm then raises its price to undercut that firm’s relenting price.

The process then repeats itself.9

Our Edgeworth cycles differ from traditional Edgeworth cycles (Maskin and Tirole, 1988;

Wallner, 1999; Eckert, 2003) in a few important ways. First, the residual demand of the

higher-priced firm is nonzero because of the probabilistic nature of search, softening the

incentive to undercut. Second, when a firm relents after prices have been competed suf-

ficiently low, it does so deterministically and to its own benefit. Again, because there is

residual demand for the firm with the higher price, a firm relents because the residual profit

exceeds that of undercutting its competitor. This is in contrast to Maskin and Tirole’s

(1988) model, wherein there is no residual demand, so a firm does not immediately benefit

from relenting, leading to a stochastic decision to relent as both firms hope the other will

relent first.10

Nonzero residual demand provides a greater incentive to relent to the firm with the larger

installed base of consumers, that is, the firm whose price is observed by more consumers

prior to search. This result provides a testable implication that larger firms will tend to be

the first to raise prices during price wars. This outcome is consistent with empirical findings

in gasoline markets, e.g., Noel (2007b), Atkinson (2009), and Isakower and Wang (2014).

Moreover, we can precisely characterize the point at which a firm will relent by linking the

search literature to the literature on capacity-constrained price competition via Gelman

and Salop’s 1983 judo price, which in this context is defined as the highest price a firm’s

competitor can set such that the firm would rather monopolize its residual demand instead

9Edgeworth cycles were first (informally) predicted by Edgeworth (1925), with the presence of capacity
constraints driving the emergence of cycles. The notion was formally examined by Shubik (1959), who found
that the equilibrium, while not characterized by cycles, involves price dispersion through mixed strategies.
See Vives (1993) for a detailed discussion of the non-existence of pure-strategy equilibrium and indeterminacy
of prices in Bertrand-Edgeworth games.

10Wallner (1999) finds a deterministic reset driven by cycles being exactly three steps in length, so firms
alternate on resets.
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of continuing the price war. This offers a unique interpretation of consumer search as a

soft capacity constraint in that lowering the price increases sales by less than the amount

dictated by the consumers’ demand.

Third, the peak and trough of the cycles in our model vary with the consumer search behav-

ior and can thus move independent of costs, as is observed in retail gasoline markets (Noel,

2007a). When consumers have a high propensity to search (have chosen lower thresholds),

the prices are competed very low and firms may limit their price when relenting. Alterna-

tively, when consumers have a low propensity to search (have chosen higher thresholds), the

firms will relent when the price is still relatively high, as they induce little search by charg-

ing a high price.11 In particular, this means that in our framework, firms do not generally

compete the price down to marginal cost.12 Lastly, the cycles in our model are aperiodic

and stochastic. The period length of the cycles is inherently random due to the nature of

the price stickiness: opportunities for price revisions are themselves stochastic. The pe-

riod length is then further affected by the consumers’ search behavior as the incentives to

undercut versus relent shift.

The potential convergence of the long-run equilibrium dynamic depends on the nature of

noise in the consumer dynamic, in particular if it is possible that the aggregate probability

of search can converge to (approximately) zero. If consumers can become discouraged from

searching, then there is almost sure convergence to monopoly pricing and zero search (the

Diamond paradox). If, on the other hand, consumers never become entirely discouraged,

i.e., if consumers have a sufficiently high probability of search given the maximum chosen

threshold and monopoly pricing, then neither the distribution of consumer thresholds nor

the prices set by the firms will converge over time. Instead, the stochastic Edgeworth

cycles that characterize the short run will persist indefinitely. As a consequence, marginal

cost pricing (the Bertrand paradox) is unstable. If prices were to settle at marginal cost,

11In general, the upper bound of the cycles cannot be characterized, as it need not possess a monotonic
relationship with the firms’ installed base or the distribution of reservation prices, depending on the nature
of the noise in the consumer search decisions and structure of individual demand. This is further exacerbated
by the fact that residual profit need not be quasiconcave, so there may be multiple residual profit maximizing
prices. In special cases, such as uniformly distributed noise and linear demand, the upper bound of the cycle
moves with the lower bound. See Online Appendix B.1 and B.2 for details.

12Cycling with a trough above marginal cost is also observed in Wallner’s (1999) finite horizon model
(noted above) and Noel’s (2008) model with stochastic marginal costs.
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consumers would no longer benefit from searching and thus would gradually adopt higher

reservation prices. As the probability of consumer search decreases, one of the firms is able

to raise its price and sell a positive quantity since there are some consumers that do not

search, thereby obtaining positive profits.

The remainder of the paper is structured as follows. Section 2 presents the model. The

comparative statics and dynamics are presented in section 3. Discussion and concluding

remarks are provided in section 4.

2 The Model

This section develops a continuous-time duopoly model with search in which firms compete

by choosing prices and consumers, endowed with thresholds influencing search decisions, up-

date those thresholds over time. Prices and thresholds are sticky: the firms’ and consumers’

opportunities to revise their strategies are stochastic and governed by Poisson processes.

The primary motivation for utilizing a continuous time approach is that for any open in-

terval of time, the following two mutually exclusive events occur with positive probability:

the firms update their prices multiple times before consumers update their thresholds and

consumers update their thresholds multiple times before the firms update their prices.13

2.1 Preliminaries and Timing

The market consists of two identical firms competing in prices and a continuum consumers

with unit mass and identical consumption preferences. A typical firm is indexed by i. Time

flows continuously and is indexed by t ∈ [0,∞). Denote by pt =
(
pt1, p

t
2

)
the vector of firms’

prices at each time t. To avoid confusion, ξ denotes a price that is not associated with any

particular firm. The firms have a constant marginal cost of production normalized to zero.

At each time t, market activities occur in four stages.14

13Though the model is cast in continuous time, it can be interpreted as a sequential model à la Maskin
and Tirole (1985) and Maskin and Tirole (1988); however, this requires introducing an extra mechanism
for consumer threshold revisions. The Poisson parameters (the rates at which the firms and consumers
update) only affect the relative likelihood of each event occurring. Hence, the results are independent of the
parameters insofar as the probability of each event occurring is distinguishable from zero and the explicit
parameter values are omitted.

14The first three stages are akin to the Diamond-Stahl model of undirected search (at each t).
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Date 0. Each firm, if given the opportunity to adjust its price via an independent

Poisson process, selects its price from a finite grid G = {g0, g1, . . . , gM}, where gm <

gm+1, to maximize its instantaneous profits.15 Otherwise, prices are unchanged.

Date 1. Each consumer observes a single firm’s price and may search at cost c > 0

to learn the other firm’s price. The probability of a consumer observing price pti is

αi ∈ (0, 1).16 Let α1 = α ∈ (0, 1).

Date 2. After the search decision, each consumer purchases from the firm with the

lowest observed price ξ. When both firms set the same price, a searching consumer

purchases from the first observed price; i.e., she buys from firm i with probability αi.

Date 3. Each consumer receives opportunities to update her threshold (detailed

below) according to a Poisson process, which is independent across consumers.

The initial price vector p0 is exogenously fixed, though the equilibrium dynamics do not

depend on this starting value. Before proceeding, three remarks are in order. First, the

grid G is used to ensure that best responses are well-defined, though throughout we will

make comparisons to values defined independently of the grid. Second, the assumption

that at each instant, the price observed by each consumer (αi) is independent of previous

purchases does not influence the dynamics or equilibrium outcomes.17. Third, the results

are not sensitive to the relative positioning of date 3.

2.2 Consumer Preferences and Search Strategies

Each consumer is endowed with the stationary instantaneous utility function u(q, ξ) =

v(q) − ξq, where q is the quantity of the good consumed, v(·) is strictly concave, and ξ is

the price at which the good is purchased. Under this specification, there exists a continuous

decreasing function D(ξ) = arg maxq u(q, ξ) that specifies the quantity that each consumer

will purchase at the price ξ at any time t. Because the mass of consumers is unity, individual

15We discuss this myopic assumption in greater detail in Online Appendix C.1.
16The following example helps illustrate why the probability of observing a given price is random. Suppose

that there is a city with two gas stations, one located on each side of the city. It is unclear ex ante which
side of the city a given driver will be on when needing to refuel. The driver observes the price of the closest
station.

17This assumption simplifies the analysis and notation. We discuss this in greater detail in Online
Appendix A.2.
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demand D(ξ) corresponds to market demand. It is useful to define the consumers’ indirect

utility function v(ξ, s) = u (D(ξ), ξ) − cs, where s = 1 if the consumer searches and s = 0

otherwise.

Assumption 1 (A1). ξD(ξ) is strictly quasiconcave with unique maximizer ξm.

The consumers’ search decision is governed by a simple rule of thumb: a consumer searches

if the observed price exceeds some reservation price. Each consumer is endowed with a

threshold τ ∈ {τ0, . . . , τL}, where τk < τk+1 and L ≥ 1.18 These thresholds correspond to

the consumers’ strategies. Define X as the unit simplex in RL:

X :=

{
(x0, . . . , xL) ∈ RL+1 : xk ∈ [0, 1] for all k = 0, . . . , L and

∑L

k=0
xk = 1

}
.

Denote by xt =
(
xt0, . . . , x

t
L

)
∈ X the mass of consumers endowed with each threshold at

time t. Assume x0k > 0 for all k, otherwise, any k such that x0k can be removed from the

grid and the game proceeds identically.

At each time t, each consumer receives an independent random shock σt to her threshold

τ and then searches in that period if and only if the observed price ξ exceeds both the

perturbed threshold and the search cost; i.e., if ξ > max
{
τ + σt, c

}
.19 Let τ + σt denote

the minimal acceptable (reservation) price, where any observed price ξ > τ + σt leaves that

consumer dissatisfied and willing to search.20 However, the consumer is still self-serving

and recognizes that if the price is less than the cost of search, then the savings from a lower

price would not justify the search. The shock σt is independent across time and distributed

according to the distribution ϕ. A consumer that observes a price ξ will therefore search

with probability ϕ(ξ − τ)ι(c,∞), where ι(c,∞) is the indicator function for ξ ∈ (c,∞).

Assumption 2 (A2). ϕ(·) is continuous and strictly increasing on (−τL, ξm − τ0).
18The results generalize to the case of continuous thresholds following Cheung (2016) and Cheung and

Wu (2018).
19The assumption that this shock is independent across consumers is unnecessary for the purposes of this

paper. It is, however, very plausible and guarantees that the expected profits coincide with actual profits.
20The stochastic behavior generated by σt is similar to that of the Bayesian model in Janssen et al.

(2017), where consumers form and update beliefs regarding production costs.
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A2 imposes two relatively mild conditions on the distribution of the shocks to consumers’

search thresholds. First, suppϕ ⊇ (−τL, ξm − τ0), though the density remains unrestricted

on this interval. Second, the magnitude of the shock may be large enough that a consumer

with the highest possible threshold is dissatisfied with any positive price and a consumer

with the lowest possible threshold may be satisfied with any price below the monopoly price.

This is not a particularly imposing assumption as the probability of these events may be

arbitrarily small. Let

ϕ̄(ξ, x) =

{∑L
k=0 ϕ (ξ − τk)xk if ξ > c

0 if ξ ≤ c

denote the average probability that a random consumer searches after observing a price ξ.

Because there are a continuum of consumers, ϕ̄(ξ, x) is equivalently the mass of consumers

that search after observing a price ξ. Note that ϕ̄(ξ, x) is strictly increasing in ξ on [c, ξm],

which consistent with the empirical evidence from gasoline markets (Lewis and Marvel,

2011).21

The distribution of the consumers’ thresholds xt evolves as the consumers update their indi-

vidual strategies. Each consumer receives opportunities to update her threshold according

to a Poisson process, which is independent across consumers.22 We consider two classes of

decision rules when consumers change their thresholds, which represent different informa-

tional burdens as well as degrees of sophistication in behavior: the best response dynamic

and an imitation dynamic. Under the best response dynamic, consumers choose a threshold

that is in the set of myopic best responses to the current state (the price vector pt). This

revision protocol does not require explicit knowledge of the prices, only of the payoffs other

consumers receive for each possible threshold. Let

E
[
v|pt, τ

]
=

2∑
i=1

αi

(
ϕ
(
pti, τ

)
v

(
min
j
ptj , 1

)
+
(
1− ϕ

(
pti, τ

))
v
(
pti, 0

))
.

denote the expected utility of a consumer with threshold τ . The evolution of xt under the

best response dynamic is defined by the differential inclusion

ẋt ∈ B
(
pt
)
− xt,

21We prove this and other supporting results on ϕ̄(ξ, x) in Lemma 1 in the Appendix.
22As with the pricing dynamic, the rate of this process is irrelevant and thus omitted.
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where B (p) ⊂ X denotes the best response correspondence for the consumers and ẋt denotes

the derivative of the state with respect to time.

However, this protocol still places a significant informational burden on the consumers. Con-

trary to the best response dynamic, the imitation dynamic imposes minimal informational

burdens on the consumers. Under this dynamic, when a consumer has the opportunity to

change her threshold, she is matched uniformly at random with another consumer. Con-

ditional on being matched with a consumer with threshold τ`, a consumer with threshold

τk adopts τ` with probability rk`
(
E
[
v|pt, τk

]
, E
[
v|pt, τ`

])
. The overall probability that a

consumer switches from threshold τk to τ` is thus ρk` = x`rk`.

Assumption 3 (A3). rk`
(
E
[
v|pt, τk

]
, E
[
v|pt, τ`

])
> r`k

(
E
[
v|pt, τ`

]
, E
[
v|pt, τk

])
if and

only if E
[
v|pt, τk

]
> E

[
v|pt, τ`

]
.

Given a pair of strategies, A3 requires that consumers are more likely to switch from the

strategy that performs worse to one that performs better than the reverse. The evolution

of xt under the imitation dynamic is defined by the system of differential equations

ẋtk =
L∑
`=0

xt`ρ`k − xtk
L∑
`=0

ρk`.

for all k = 0, . . . , L

2.3 Firm Demand, Pricing, and Profits

We now construct each firm’s demand as a function of the prices p and the distribution of

consumers’ thresholds x. If firm i’s price is lower than its competitor’s price, then i serves

the consumers that initially observe pi along with all of the searching consumers. If the

two firms set the same price, then firm i will serve those consumers that initially observe

pi. Finally, if firm i does not have the lowest price, then it will serve only those consumers

that initially observe pi and do not search. Firm i’s demand is thus

Di (p, x) = D(pi)×


αi + (1− αi)ϕ̄(p−i, x) if pi < p−i

αi if pi = p−i

αi (1− ϕ̄ (pi, x)) if pi > p−i.
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Let the demand when pi < p−i be the front-side demand and the demand when pi > p−i be

the residual demand. The front-side profit πFi (p, x) and residual profit πRi (ξ, x) are defined

analogously:

πFi (p, x) = piD(pi)
(
αi + (1− αi)ϕ̄(p−i, x)

)
πRi (ξ, x) = ξD(ξ)αi (1− ϕ̄(ξ, x)) .

Note that there is positive residual demand facing the firm that does not have the lowest

price, even without the presence of capacity constraints. This demand is present due to the

stochastic nature by which consumers search. Some consumers will not search and instead

purchase at the higher price. Like the consumer search models in Varian (1980) and Stahl

(1989), the residual demand is independent of the low price, though in contrast to these

models, the front-side demand depends on the high price.

As the marginal cost of production is zero, the revenue function ξD(ξ) corresponds to the

firms’ monopoly profit, denoted by πm = ξmD (ξm), where ξm is the monopoly price. For

any price p−i = gω ∈ G, denote by Ri(gω, x) firm i’s best response correspondence. Observe

that Ri constitutes a Markov strategy where the state is given by the competitor’s current

price gω and the current distribution of thresholds x.

3 Equilibrium

As the firm’s strategies depend only on the current state and the consumers’ revision pro-

tocol depends (at most) on the current prices and current state x, our solutions constitute

Markov perfect equilibria (MPE).23 We then explore how x evolves in both the short run

and long run under the MPE. We will show below that first order stochastic dominance

offers a natural way to characterize the evolution of x. In this context, a distribution x first

order stochastically dominates a distribution x′ if, for all k = 0, . . . , L,

k∑
`=0

x` ≤
k∑
`=0

x′`,

strictly so for at least one k.

23In Online Appendix C.2, we discuss how the results extend to the case of forward-looking firms, where
Markov perfection is a more substantial condition.
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3.1 Residual Maximizers, Judo Prices, and Best Responses

For any distribution of thresholds x, define the set of residual maximizers as P̃ (x) :=

arg maxξ π
R
i (ξ, x) and define the set of residual maximizers on a grid G as P̃ (x,G) :=

arg maxg∈G π
R
i (g, x). Subscripts on P̃ (x) and P̃ (x,G) are unnecessary as each firm’s residual

profit function is a constant multiple of the other.

Proposition 1. Under A1 and A2 P̃ (x) is nonempty and sup P̃ (x) ≤ ξm.

All proofs are contained in the Appendix. With a finite grid of prices, the existence of a

residual maximizer in P̃ (x,G) is trivial. However, we will interpret the results as the grid

becomes arbitrarily fine, so it is useful to compare the results on the grid to values that are

defined independent of the grid.

Given Proposition 1, all prices are henceforth restricted to be weakly below the monopoly

price (pti ≤ ξm = gM ) as there is no justification for any firm to price above ξm. Even if a

firm’s price were set above ξm, that firm would reduce its price given its first opportunity

to do so and would never subsequently increase its price above the monopoly level.

The equilibrium characterization is based on the judo price of each firm. A firm i’s judo

price is the highest price its competitor may set such that i prefers to monopolize its residual

demand rather than undercut.24 Formally,

p∗i (x) := sup {ξ ≤ ξm : ξD(ξ) (αi + (1− αi)ϕ̄(ξ, x)) < maxpi αipiD(pi) (1− ϕ̄(pi, x))} , (1)

which is defined independently from the grid G. We can similarly describe the judo price

when prices are constrained to the grid G:

p∗i (x,G) := max {gω ∈ G \ {g0} : gω−1D(gω−1)(αi + (1− αi)ϕ̄(gω, x))

≤ max
pi∈G

αipiD(pi)(1− ϕ̄(pi, x))

}
24The term judo price originates in a model of entry with sequential pricing developed in Gelman and

Salop (1983). The authors draw an analogy between firm strategies and the martial art of judo by pointing
out that an entrant firm forces accommodation from the incumbent by setting a low price and limiting its
size, thereby incentivizing the incumbent to maintain a large profit margin at a higher price rather than
engaging in a price war. Traditionally, a firm’s judo price refers to the highest price that it may charge such
that the other firm prefers to monopolize residual demand.
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In Lemma 2 in the Appendix, we show that p∗i (x) ∈ [c, ξm). Let ‖G‖ := maxω≥1 gω − gω−1
denote the norm of G. We can then characterise the firms’ best response correspondences.

Proposition 2. Suppose A1 and A2 hold. For a sufficiently small but positive δ, if ‖G‖ < δ,

then

Ri(gω, x) =


{gω−1} if gω > p∗i (x,G)

{gω−1} ∪ P̃ (x,G) if gω = p∗i (x,G)

P̃ (x,G) if gω < p∗i (x,G).

Furthermore, if Gn is such that ‖Gn‖ → 0 as n→∞, then

(i) if gn ∈ P̃ (x,Gn) and gn → ξ as n→∞, then ξ ∈ P̃ (x),

(ii) p∗i (x,G
n)→ p∗i (x) as n→∞.

Proposition 2 demonstrates that when prices are restricted to a grid, each firm’s best re-

sponse correspondence mimics its “best responses” when the space of prices is unrestricted:

a firm will undercut it’s competitor’s price unless that price is below the judo price. This

interpretation is only approximate as a best response to prices above the judo price does

not exist when the space of prices is a continuum. Note that it is possible that a firm’s best

response is to set the same price as its competitor. In this case, its competitor’s price will

be a residual maximizer, and so it will be reflected in the term P̃ (x,G).25

As the judo price is a defining feature of the firms’ best responses, it will play a large role in

the equilibrium dynamics. Thus, it is useful to identify which firm has the lower judo price

and how each firm’s judo price changes with the distribution of consumer search thresholds.

Proposition 3. Under A1, if αi >
1
2 , then p∗i (x) ≥ p∗−i(x). If, in addition to αi >

1
2 ,

p∗i (x) > c, then p∗i (x) > p∗−i(x).

The firm with the larger installed base is less willing to engage in a price war because

having a larger installed base guarantees a greater residual demand and thus higher residual

profits. This result is analogous to the result found in studies of capacity constrained price

25This statement is formally proven in Lemma 4 in the Appendix.
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competition that the firm with the larger capacity has a higher judo price.26 The following

Proposition relates the judo price to the distribution of consumer thresholds.

Proposition 4. Under A1 and A2, if x first order stochastically dominates x′, then p∗i (x) ≥
p∗i (x

′). For a sufficiently small and positive δ, if ‖G‖ < δ, then p∗i (x,G) ≥ p∗i (x′, G).

As more consumers adopt a higher threshold for search, the judo price increases and as

consumers search less frequently, the residual profit increases while the front-side profit

decreases, so a firm has less of an incentive to undercut its competitor. While first order

stochastic dominance may seem like a restrictive condition to focus on, we will demonstrate

shortly that this characterization is the most natural and relevant way to characterize the

judo price with respect to consumer behavior.

It merits mentioning that it is generally not possible to demonstrate the same relationship

for the residual maximizers. The reason is that the relationship between P̃ (x) and x depends

heavily on the functional form of ϕ. In special cases, the upper bound of the cycles move

with the lower bound.27

3.2 Equilibrium Dynamics

Consumers will gradually adopt higher search thresholds whenever the prices are such that

search has a negative expected profit, and will otherwise gradually adopt lower search

thresholds.

Proposition 5. Suppose that A2 and A3 hold and that pt = p for all t ∈ [T, T + ε) for any

time T and ε > 0. Define c∗(p) by

c∗(p) := sup {c ≥ 0 : v(min p, 1) > αv(p1, 0) + (1− α)v(p2, 0)} .

For all t, t′ ∈ [T, T + ε) with t > t′, it follows that

(i) if c < c∗(p), then xt
′

first order stochastically dominates xt,

26See, e.g., Osborne and Pitchik (1986), Deneckere and Kovenock (1992), and Allison and Lepore (2016).
27Examples offered in Online Appendix B.1 and B.2 demonstrate that the residual maximizer can move

in either direction.
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(ii) if c > c∗(p), then xt first order stochastically dominates xt
′
.28

The fact that the distribution of consumer thresholds is always increasing or decreasing

(under the ordering induced by first order stochastic dominance) is particularly useful be-

cause it implies that Proposition 5 characterizes the motion of the firms’ judo prices over

time (by Proposition 4).

3.2.1 Edgeworth Cycles

Equilibrium pricing takes the approximate form of cycles of price wars in which firms drive

down the price to the point that one firm relents and raises its price, starting the cycle

anew. Due to the constantly changing consumer thresholds and stochastic nature of price

stickiness, the actual pattern of pricing is not quite cyclical in the classical sense in that

the bounds of the price war are not constant. Nonetheless, the general pattern repeats and

maintains the characteristics of an Edgeworth cycle. By Proposition 2, the cycles can be

formally described using the judo prices as defined on the unconstrained price space. These

price cycles will be qualitatively identical on the constrained space for a sufficiently fine

grid, the only difference being that the judo prices and residual maximizers may differ by

some arbitrarily small amount (bounded by ‖G‖).

Define p∗(x) = max {p∗1(x), p∗2(x)} as the critical judo price. The equilibrium prices are

described by the following pattern, which resembles an Edgeworth cycle. Consider an

initial price vector such that p0i > p∗−i(x) for both firms and suppose that the distribution

of consumers’ thresholds were to remain fixed. Without loss of generality, assume that

firm 2 has a weakly larger initial share of consumers, and thus by Proposition 3 the higher

judo price. Hence, firm 2’s judo price is also the critical judo price. The Edgeworth cycle

proceeds as follows:

1. Firm 1 sets a price just below p2 and will not adjust it until p2 changes.

2. Firm 2 sets a price just below p1 and will not adjust it until p1 changes.

3. Steps 1 and 2 repeat until the prices are reduced to the critical judo price p∗2(x).

28The case in which c = c∗(p) can be ignored, as the grid may always be perturbed such that no prices
satisfy this relationship.
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Figure 1: Edgeworth cycles for a fixed distribution of thresholds x.

4. Firm 2 relents and sets a price in P̃ (x) to maximize its residual profit.

5. Repeat this process from step 1.

An example is depicted in Figure 1.

During the first three steps of the cycle, the prices of the firms will be close enough that

search will not be beneficial. Thus, Proposition 5 implies that during steps 1-3 of the cycle,

consumers will be adopting higher search thresholds, which by Proposition 4 implies that

the firms’ judo prices will be increasing. If these judo prices increase enough, then a firm

that currently has the lowest price (just below the other firm’s price) may skip to step 4

of the cycle and monopolize its residual demand. While Proposition 3 guarantees that the

firm with the larger initial share of consumers will always relent first for a fixed distribution

of consumer thresholds, changes in the distribution can lead to the other firm relenting first.

Because the consumer dynamic is continuous, as consumers raise their thresholds and judo

prices increase, the critical judo price may increase to a value above the current price before

the nonbinding judo price. As such, if the firm with the smaller installed base relents first,

then the other firm would also have relented if it had received the opportunity to do so.

The range of equilibrium pricing and potential convergence depend on the parameters and

functional forms of the model. This section considers two conditions and the subsequent
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section analyzes their complements. Denote by

ek = (0, . . . , 0︸ ︷︷ ︸
k zeros

, 1, 0, . . . , 0).

the k + 1th basis vector in X. That is, ek corresponds to the distribution of consumer

thresholds in which all consumers have threshold τk.

Condition 1 (C1). If pi = inf P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c < c∗(p).

C1 states that the cost of search is sufficiently low so that search is beneficial when all

consumers have the highest possible threshold, one firm charges the critical judo price, and

the other firm charges the smallest residual maximizer. C1 not only provides an explicit

condition on the cost of search, but also implicitly puts some structure on the profit functions

in that it requires p∗(eL) < inf P̃ (eL).

The following Theorem demonstrates that under A1-A3 and C1, the equilibrium pricing

dynamic does not converge and that the range of prices in the cycles is large enough to

induce search. Define p = p∗(e0) and p̂ = inf P̃ (eL). Thus, p represents the critical judo

price when all consumers have the lowest search threshold and p̂ represents the smallest

residual maximizer when all consumers have the highest search threshold.

Theorem 1. Under A1−A3 and C1, for all ε > 0, there exists a δ > 0 and T > 0 such

that if ‖G‖ < δ, then

(i) neither pt nor xt converge as t→∞,

(ii) for all times t > T , pti ∈
[
p− ε, ξm

]
,

(iii) (xt, pti)→ (e0, ξ ≤ p+ ε) and (xt, pti)→ (eL, ξ
′ ≥ p̂− ε) infinitely many times.

Thus, the range of prices is at least [p, p̂], and the distribution of consumer thresholds varies

between the two extremes in which all consumers have the lowest and highest thresholds e0

and eL. Proposition 2 implies that some firm will eventually choose a price that is just below

its competitor’s price. Given such prices, if the grid is sufficiently fine, then the difference in
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prices will be less than the cost of search so it cannot be beneficial to search. By proposition

5, consumers gradually adopt higher search thresholds. Price stickiness implies that, over

time, prices will almost surely be stuck close together or that the time until a firm relents

from the price war will be sufficiently long such that the distribution of consumer thresholds

approaches eL. At this point, the best response correspondence implies that prices should

cycle with a maximum price of at least p̂. C1 implies that immediately after a firm relents,

when the prices are approximately p∗(eL) and ξ ∈ P̃ (eL), the cost of search is sufficiently

low so search is beneficial. Again, this will almost surely occur for long enough that the

distribution of consumer thresholds approaches e0, at which point the prices will cycle with

a lower bound of approximately p. Thus, the process cannot converge and these bounds

must be approached infinitely many times.

Condition 2 (C2). If pi = sup P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c < c∗(p).

Replacing C1 with the weaker C2 yields the following corollary to Theorem 1.

Corollary 1. Under A1−A3 and C2, for all ε > 0, there exists a grid G such that there

exists an equilibrium in which

(i) neither pt nor xt converge as t→∞,

(ii) for all times t > T , pti ∈ [p− ε, ξm + ε], and

(iii) (xt, pti)→ (e0, ξ ≤ p+ ε) and (xt, pti)→ (eL, ξ
′ ≥ p̂− ε) infinitely many times.

Note that C1 and C2 coincide if and only if P̃ (eL) is a singleton.29 This result is informative,

as Section 3.2.2 shows that an equilibrium exists in which the distribution of consumer

thresholds converges under the complement of C1 and all equilibria have this property

under the complement of C2. Hence, multiple equilibrium dynamics may exist for a range

29The arguments made to prove this corollary are nearly identical to those made in Theorem 1 with one
key difference: the grid needs to be chosen such that for some neighborhood N (eL) of eL and all x ∈ N (eL),
sup P̃ (eL, G) ∈ P̃ (x,G) and the equilibrium needs to dictate that when a firm chooses a price pt ∈ P̃ (x,G),
it will choose pt = sup P̃ (eL, G).
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of search costs if P̃ (eL) is not a singleton, though the equilibrium pricing strategy is unique

(Proposition 2).

The results of this section somewhat correspond with those of Maskin and Tirole (1988)

regarding Edgeworth Cycles, with several important differences. First and foremost, cycles

are the only dynamic in the short run and, as we show below, kinked demand equilibria

can only emerge in the long run, with cycles defining the short run. Second, the mechanism

by which the cycles emerge is different. In Maskin and Tirole, cycles emerge as a best

response to a dynamic, forward-looking strategy, whereas cycles in this model emerge due

to the presence of boundedly rational consumers which creates positive residual demand

for the firm with a higher price. Thus, the cycles in our paper are driven by the demand

side of the market, as opposed to Maskin and Tirole, where cycles are driven by the supply

side. Third, the characteristics of the cycles differ. In Maskin and Tirole, prices are driven

down to marginal cost, and firms relent randomly since relenting yields zero profits in the

short run. That is, once price hits marginal cost, firms make zero profits. Because residual

demand is zero for the firm with the higher price, relenting leads to zero profits as well.

Each firm prefers that its competition relents first, so it can benefit by undercutting. Due to

the public nature of relenting, firms employ a mixed strategy once price hits marginal cost.

In this setting, relenting is optimal due to non-zero residual demand for the firm with the

higher price, allowing identification of not only when the firms will relent, but also which

firm will relent.

3.2.2 Kinked Demand Equilibria and the Bertrand and Diamond Paradoxes

When the conditions presented in the previous subsection are violated, the equilibrium

converges over time. There are two notions in which the dynamic may converge, depending

on the parameters of the model. First, Edgeworth cycles may persist indefinitely, but with

the range of the cycles shrinking in the limit. Second, there may be convergence of both

prices to the search cost in finite time, though occurrence of this dynamic requires severely

restrictive conditions. In either case, the distribution of consumer thresholds converges to

eL. Formally, the conditions considered here are as follows.
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Condition 1′ (C1′). If pi = inf P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c > c∗(p).

Condition 2′ (C2′). If pi = sup P̃ (eL) and p−i = p∗i (eL) = p∗(eL), then c > c∗(p).

Condition 3 (C3). There exists a neighborhood of eL N (eL) such that P̃ (x) = {c} for all

x ∈ N (eL).

C2′ is the complement of C2 and C1′ is the complement of C1. While not immediately

obvious, C3 is a subcase of C2′.30 The following theorem characterizes the first type of

convergence in which the distribution of consumer thresholds converges to eL and price

cycles indefinitely under a smaller range than Theorem 1.

Theorem 2. Under A1−A3 and C2′, for all ε > 0, there exists a δ > 0 and T > 0 such

that if ‖G‖ < δ, then

(i) the distribution of consumer thresholds xt → eL as t→∞,

(ii) for all times t > T , pti ∈ [p∗(eL)− ε, sup P̃ (eL) + ε], and

(iii) pt → ξ ≤ p∗(eL) + ε and pti → ξ′ ≥ p̂− ε infinitely many times.

Theorem 2 shows that in the long run, prices cycle indefinitely with a lower bound of

p∗(eL) and an upper bound between inf P̃ (eL) and sup P̃ (eL). If the firms’ prices are close

(|p1−p2| < c), then consumers do not benefit from searching, so the distribution of consumer

search thresholds will tend towards eL. Given price stickiness and the fact that firms will

set prices that are close until one firm relents and raises its price, the firms’ prices will

almost surely remain close for a sufficiently long period of time such that the distribution

of consumer thresholds approaches eL. At that point, the consumers search sufficiently

infrequently such that the gap that emerges following one firm relenting will not be large

enough to induce search. As such, the distribution of consumers’ thresholds will continue

to converge towards eL and the firms’ cycles will remain fixed.

30To see why, note that since p∗i ≤ inf P̃ (x), under C3, p∗i (x) = c for each firm i and all x ∈ N (eL). It
follows that c∗(p∗(eL), sup P̃ (eL)) = 0, so c > 0 implies C2′.
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Corollary 2. Under A1−A3 and C1′, for all ε > 0, there exists a grid G and a time T > 0

such that there exists an equilibrium in which

(i) the distribution of consumer thresholds xt → eL as t→∞,

(ii) for all times t > T , pti ∈ [p∗(eL)− ε, sup P̃ (eL) + ε], and

(iii) pt → ξ ≤ p∗(eL) + ε and pti → ξ′ ≥ p̂− ε infinitely many times.

Thus C1′ is a sufficient condition for this type of convergence to occur. If P̃ (eL) is not

a singleton, then there is a range of search costs in which both C1′ and C2′ are satisfied.

For search costs in that range, there exists both convergent and nonconvergent equilibrium

paths. This multiplicity of equilibria can be ruled out by assuming ϕ is such that the

residual profit given x = eL, ξD(ξ)(1−ϕ(ξ− τL)), is strictly quasiconcave in ξ. The follow-

ing proposition demonstrates some limiting properties as the grid of consumer thresholds

becomes large.

Proposition 6. Under A1−A3, as τL → ξm−inf suppϕ, p∗i (eL)→ ξm and thus sup P̃ (eL) =

p∗i (eL). Consequently, C2 holds for sufficiently large τL. Furthermore for all ε > 0, there

exists a τ̄ > 0, δ > 0, and T > 0 such that if τL > τ̄ and ‖G‖ < δ, then all equilibria are

such that pti > ξm − ε for both firms i and all t > T .

This result follows as a corollary of Theorem 2 and is very similar to the Diamond paradox –

equilibrium monopoly pricing with any number of firms – that emerges in the dynamic model

of undirected consumer search in Diamond (1971) and the static model of Stahl (1989).

The intuition for the result is similar, though the mechanisms by which the equilibrium

emerges is different. In this model, the firms will price in such a way that consumers are

induced to search less often, and eventually search with sufficiently low probability such that

monopoly pricing is optimal. Once reached, search is not beneficial, as both firms set the

monopoly price, and so the outcome is stable. In the Diamond-Stahl model of consumer

search, the consumers form rational expectations of the firms’ pricing distributions, and

the only possible equilibrium involves monopoly pricing by the firms and no search by the
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consumers.31 With their mechanism, the Diamond paradox emerges because of simultaneous

anticipation of this outcome by both firms and consumers.

Proposition 6 posits an equilibrium of similar character to the Diamond paradox (Stahl,

1989) and the kinked demand curve equilibrium of Maskin and Tirole (1988). The difference

is in the mechanisms driving the result. In Stahl (1989), convergence to monopoly pricing

and no search occurs when the exogenously determined proportion of searchers (with a zero

search cost) tends to zero. In Maskin and Tirole (1988), convergence follows from the firm

side of the market. As firms become infinitely patient, a Markov perfect equilibrium in which

both firms choose the monopoly price can be sustained, as the firms are able to internalize

the cost of engaging in a price war. In this paper, the equilibrium follows from demand side

characteristics. Moreover, the process by which consumers stop searching is endogenous to

the firms’ pricing strategies. Thus, a feedback loop occurs where the proximity of the firms’

prices during the cycles induce consumers to search less. As consumers search less, the

lower bound of the cycles increases (Proposition 4). Furthermore under C2, the difference

in pricing as the cycles reset is not enough to decrease the consumers thresholds. Thus the

process continues until prices approach the monopoly level and the distribution of thresholds

approaches eL.

Lastly, the following theorem demonstrates that under condition C3, all equilibria are such

that the firms’ prices converge in finite time, with the distribution of consumers’ converging

over time to eL.

Theorem 3. Under A1−A3 and C3, for all ε > 0, there exists a δ > 0 and T > 0 such

that if ‖G‖ < δ, then xt → eL and firms will undercut one another until pt1 = pt2 = ξ = c,

and will remain at that price thereafter.

Under C3, given any distribution of thresholds, the consumers search at any price ξ > c

with sufficiently high probability, so the residual profit is always maximized by setting the

price equal to the search cost to induce consumers not to search. Thus given some initial

prices, the firms engage in a price war until the price is driven to the search cost, and

31See Online Appendix B.3 for a full derivation of this result in the context of our model.
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the firms never have the incentive to increase their prices. This result can be seen as a

Bertrand-like outcome; if we allow the search cost to tend to zero, then the equilibrium will

converge to marginal cost pricing, but will not remain as there will be random shifts in the

search thresholds, allowing firms to raise their prices and receive positive profits.

Corollary 3. Under the conditions of Theorem 3, if c = 0, then for every T > 0, there

exists an ε > 0, η > 0, and T ′ > t such that pti ∈ (0, η) on t ∈ [T ′, T ′ + ε).

That is, the (limiting) Bertrand outcome is Lyapunov stable, though not asymptotically

stable.

4 Discussion and Concluding Remarks

By developing a model of undirected consumer search with firm competition, this paper has

characterized the market outcomes and developed several empirically testable predictions

– specifically the short- and long-run dynamics – resulting from the bounded rationality of

agents. The short-run dynamics are characterized by stochastic Edgeworth cycles. For a

given distribution of consumer search thresholds, the firm with the larger installed base has

the greater incentive to monopolize residual demand rather than continuing the price war.

Hence, in situations in which the firms’ opportunities to update prices occur more frequently

than the consumers’ opportunities to reevaluate search decisions, larger firms are more likely

to end the reset the cycle by monopolizing residual demand, a prediction consistent with

gasoline markets (Noel, 2007b; Atkinson, 2009; Zimmerman et al., 2012; Isakower and Wang,

2014). These cycles persist (aperiodically) in the long run unless consumers can learn to

search with sufficient infrequency (almost surely not search). Hence, convergence to the

kinked demand equilibria of Maskin and Tirole (1988) and the Diamond paradox occurs

only under restricted circumstances.

The model also offers a consistent explanation of the distinct pricing patterns in gasoline

markets outlined in Noel (2007a). Noel (2007a) finds three distinct patterns: sticky pricing,

Edgeworth price cycles, and cost-based pricing. Each of these regimes is consistent with one

of our theorems. The sticky-pricing result is consistent with Theorem 1, Edgeworth cycles
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with Theorem 2, and cost-based pricing with Theorem 3 (and Proposition 6). Moreover,

Corollaries 1 and 2 highlight that multiple equilibrium dynamics can persist in which there is

both convergence and non-convergence. Hence, our model proposes a consistent theoretical

explanation of these differences. A formal empirical analysis of this mechanism is left for

future work.

The bounded rationality of consumers has important implications. The model does not

coincide with Maskin and Tirole (1988), Eckert (2003), and Noel (2008) even if search costs

are zero or firms are forward looking. Whenever prices equalize, consumers will randomly

shift toward higher price thresholds, thereby creating an incentive for firms to raise prices.

Both types of equilibria that Maskin and Tirole characterize involve firms setting identical

prices at least for some period of time. Thus, the underlying consumer dynamic will induce

some change in Maskin and Tirole’s results that does not disappear in the limit.

We now conclude with a discussion of the implications of the model and the assumptions

surrounding the search costs and decisions. First, a major implication of the results is that

the Bertrand paradox does not emerge as an equilibrium outcome as the cost of search tends

to zero. This result demonstrates the (asymptotic) instability of the Bertrand paradox as

it only occurs under highly specific assumptions and is upset by arbitrary perturbations.

Marginal cost pricing cannot emerge with even arbitrarily small search costs in our model

because consumers do not benefit from search when prices approach this level. Over time,

this will lead to random shifts in the distribution of consumer price thresholds (Proposition

5) that firms can take advantage to obtain positive profits (by A3). Thus, the Bertrand

paradox is only a temporary outcome in the singleton case with exactly zero search costs.

Second, the cost of search does not influence any of the qualitative results of the model as

long as that cost is nonzero (with a sufficiently fine pricing grid). The cost is only relevant

insofar as it determines whether search has a positive or negative expected value, and as

long as the price grid is sufficiently fine, it can take on both of these values. The only

effect that the cost has on the process is on the rate at which the process evolves. The

reason is that the probability that a consumer adopts a strategy is increasing in the payoff

from that strategy and decreasing in the payoff of the incumbent strategy. A higher search
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cost reduces the expected value of search in all states, and thus increases the rate at which

consumers are discouraged from search during the price cycles and decreases the rate at

which consumers are encouraged to search when the cycle resets.

Though the search cost does not influence the qualitative results, the model offers important

insights into the role of the search cost (and its endogenization) in pricing. If higher search

costs increase the rate of convergence to higher thresholds and reduce the rate of convergence

to lower thresholds, then firms benefit by raising the search cost so that consumers search

less for greater periods of time. Furthermore, both the critical judo price and smallest

residual maximizer are bounded below by the search cost. Hence, firms can potentially

increase their profits via obfuscation (Ellison and Ellison, 2009; Ellison and Wolitsky, 2012)

to increase the search cost. When binding (i.e., when the judo price is the search cost or

under C3 and the conditions of Theorem 3), firms can strictly benefit from actions that

increase the search cost c, provided that the cost of such actions are not too large.

Third, a component that most models of undirected search incorporate is a fraction of

“shoppers,” consumers that either have zero search cost (and thus optimally search) or are

exogenously informed as to the prices set by the firms. As this paper’s primary objective

is to weaken the assumptions that are often present in these models and examine the

impact of bounded rationality on firm and consumer behavior, such an inclusion would

be inappropriate for this paper. Nevertheless, it is straightforward to deduce the impact

that a fraction of shoppers would have on the model’s predictions. These shoppers increase

the fraction of consumers that search given a fixed observed price. Thus, the inclusion of

shoppers in the model is equivalent to creating a negative bias to the noise in each consumer’s

price threshold. If the fraction of shoppers is large enough, this will induce the conditions of

Theorem 1 and thus perpetual cycling of prices and consumer price thresholds. Otherwise,

if this fraction is sufficiently small, then the conditions of Theorem 2 and Proposition 6 may

still be satisfied, resulting in a long run convergence to the Diamond paradox.

This result stands in contrast to Stahl (1989), who finds in a static model where consumers

form rational expectations about the firms’ strategies that the distribution of firm’s prices

varies continuously between marginal cost pricing (Bertrand paradox) and monopoly pricing
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(Diamond paradox) as the fraction of shoppers varies between zero and one.32 Similarly,

this result is in contrast to the theoretical results of Pennerstorfer et al. (2020), who find

similar results to Stahl (1989). However, the persistence of price dispersion is consistent

with the semiparametric empirical evidence of Pennerstorfer et al. (2020), whereby the

degree of price dispersion decreases, but does not disappear as the share of shoppers tends

to zero or one.
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Appendix

Lemmas 1 and 2 are supporting results used throughout.

Lemma 1. Under A2, the following statements are true:

(i) ϕ̄(ξ, x) is continuous on [0, c) ∪ (c, ξm]×X,

(ii) ϕ̄(ξ, x) is strictly increasing in ξ on [c, ξm],

(iii) if x first order stochastically dominates x′, then ϕ̄(ξ, x) < ϕ̄(ξ, x′) for all ξ ∈ [c, ξm].

Proof of Lemma 1.

Proof. Statements (i) and (ii) follow immediately from A2 and the definition of ϕ̄(ξ, x).

Item (iii) is trivially true if ξ ≤ c. We now prove statement (iii). Suppose that ξ > c and x

first order stochastically dominates x′. By Abel’s lemma, ϕ̄(ξ, x) =
∑L

k=0 ϕ(ξ − τk)xk can

be rewritten as

ϕ(ξ − τL)−
L−1∑
k=0

(
k∑
`=0

x`

)
(ϕ(ξ − τk+1)− ϕ(ξ − τk))

Hence, for distributions x and x′, ϕ̄(ξ, x) < ϕ̄(ξ, x′) if and only if

ϕ(ξ − τL)−
L−1∑
k=0

(
k∑
`=0

x`

)
(ϕ(ξ − τk+1)− ϕ(ξ − τk))

< ϕ(ξ − τL)−
L−1∑
k=0

(
k∑
`=0

x′l

)
(ϕ(ξ − τk+1)− ϕ(ξ − τk)),

which simplifies to

L−1∑
k=0

(
k∑
`=0

(x` − x′`)
)

(ϕ(ξ − τk+1)− ϕ(ξ − τk)) > 0.
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By A2, (ϕ(ξ − τk+1) − ϕ(ξ − τk)) < 0 for all k = 0, . . . , L, so it is sufficient that, for each

k = 0, . . . , L− 1,

L−1∑
k=0

k∑
`=0

(x` − x′`) =
L∑
k=0

k∑
`=0

(x` − x′`) < 0,

which is true if x exhibits first order stochastic dominance over x′.

Proof of Proposition 1.

Proof. To demonstrate that P̃ (x) is nonempty, it sufficient to show that for all x ∈ X,

πRi (ξ, x) is upper semicontinuous in ξ. By Lemma 1(i), ϕ̄(ξ, x) is continuous on [0, c) ∪
(c, ξm) ×X. Therefore, it is sufficient verify upper semicontinuity at ξ = c. For all ξ ≤ c,

ϕ̄(ξ, x) = 0, so πRi (ξ, x) = αiξD(ξ). For any ξ > c, πRi (ξ, x) = αiξD(ξ)(1 − ϕ̄(ξ, x)) ≤
αiξD(ξ). Thus,

lim sup
ξ→c

πRi (ξ, x) = πRi (c, x),

so πRi (ξ, x) is upper semicontinuous and possesses a maximizer on [0, ξm]. Hence, P̃ (x) is

nonempty.

To show that sup P̃ (x) ≤ ξm, suppose to the contrary that ξ ∈ P̃ (x) but ξ > ξm. Then,

under A1, ξD(ξ) < ξmD(ξm). Judiciously adding zero by adding and subtracting

ξmD(ξm)(1− ϕ̄(ξm, x)) + ξD(ξ)ϕ̄(ξm, x)

to this candidate maximal residual profits yields

ξD(ξ)(1− ϕ̄(ξ, x)) = ξmD(ξm)(1− ϕ̄(ξm, x))− ξD(ξ)(ϕ̄(ξ, x)− ϕ̄(ξm, x)︸ ︷︷ ︸
>0 by Lemma 1

)

− (ξmD(ξm)− ξD(ξ)︸ ︷︷ ︸
>0 by A1

)(1− ϕ̄(ξm, x)) < ξmD(ξm)(1− ϕ̄(ξm, x)),

a contradiction of ξ as a residual maximizer. Hence, sup P̃ (x) ≤ ξm.

Lemma 2. Under A1 and A2, c ≤ p∗i (x) < ξm.

Proof of Lemma 2.
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Proof. For ξ < c, observe that the front-side profits given prices p = (ξ, ξ) is πF ((ξ, ξ), x) =

αiξD(ξ). A1 implies that the front-side profit is strictly increasing in ξ. Since firm i’s

residual profits at pi = c are

πRi (c, x) = αicD(c) > αiξD(ξ) = πF ((ξ, ξ), x),

it must be that c ≤ p∗i (x) as the firm strictly prefers maximizing its residual demand rather

than undercutting at any ξ < c.

By A2, ϕ̄(ξm, x) > 0. Consider ξ ∈ P̃ (x) and note that

πFi ((ξm, ξm), x) = ξmD(ξm)(αi + (1− αi)ϕ̄(ξm, x)) > αiξ
mD(ξm)

≥ αiξD(ξ)

≥ max
pi

αipiD(pi)(1− ϕ̄(pi, x))

= max
pi
, πR(pi, x),

where the second inequality follows from ξ ≤ ξM being a residual maximizer and last

inequality follows from Proposition 1. Hence, p∗i (x) < ξm.

The proof of Proposition 2 relies on the following three lemmas.

Lemma 3. Let gω∗(x) = p∗i (x,G). There exists a δ > 0 such that if ‖G‖ < δ, then

gω∗(x) < gM = ξm.

Proof. Suppose to the contrary that gω∗(x) = gM = ξm and consider ξ ∈ P̃ (x,G). The proof

proceeds in two cases: ξ < ξm and ξ = ξm.

Case 1: ξ < ξm. If ξ < ξm, then ξm = gM > gM−1 ≥ ξ. Under this supposition,

gM−1D(gM−1)(αi + (1− αi)ϕ̄(gM , x)) < αiξD(ξ)(1− ϕ̄(ξ, x)), (2)

by the definition of the restricted judo price. A1 and Lemma 1(ii) imply that gω−1D(gω−1)(αi+

(1− αi)ϕ̄(gω, x)) is weakly increasing in both ω and gω, so

gM−1D(gM−1)(αi + (1− αi)ϕ̄(gM , x)) ≥ gM−1D(gM−1)(αi + (1− αi)ϕ̄(gM−1, x))

≥ ξD(ξ)(αi + (1− αi)ϕ̄(ξ, x))

≥ αiξD(ξ)(1− ϕ̄(ξ, x)). (3)
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By (2) and (3),

αiξD(ξ)(1− ϕ̄(ξ, x)) < αiξD(ξ)(1− ϕ̄(ξ, x)),

a contradiction.

Case 2: ξ = ξm. Because gM−1 < gω∗(x) = gM = ξm by hypothesis, it follows from the

definition of the restricted judo price that

gM−1D(gM−1)(αi + (1− αi)ϕ̄(ξm, x)) < αiξ
mD(ξm)(1− ϕ̄(ξm, x)),

which when rearranged yields

ξmD(ξm)− gM−1D(gM−1) > gM−1D(gM−1)
ϕ̄(ξm, x)

α(1− ϕ̄(ξm, x))
. (4)

Suppose that ‖G‖ < δ for some δ > 0. Then, gM−1 ≥ ξm − δ, so by A1, gM−1D(gM−1) ≥
(ξm − δ)D(ξm − δ). Hence, if (4) is satisfied, then

ξmD(ξm)− (ξm − δ)D(ξm − δ) > (ξm − δ)D(ξm − δ) ϕ̄(ξm, x)

α(1− ϕ̄(ξm, x))
. (5)

By A1, the LHS of (5) is decreasing in δ while the RHS of (5) is increasing in δ. Taking

δ → ξm yields ξmD(ξm) > 0 and taking δ → 0 yields

0 > (ξm)D(ξm)
ϕ̄(ξm, x)

α(1− ϕ̄(ξm, x))
.

a contradiction. By continuity, there exists a δ′ such that there is a contradiction for all

δ ≤ δ′, so for ‖G‖ < δ′, gω∗(x) = p∗i (x,G) < gM .

Lemma 4. There exists a small positive δ such that if ‖G‖ < δ and gω ∈ Ri(gω, x), then

gω ∈ P̃ (x,G).

Proof. Suppose gω ∈ Ri(gω, x). Then,

max
pi∈G

αipiD(pi)(1− ϕ̄(pi, x)) ≤ αigωD(gω)

and

gω−1D(gω−1)(αi + (1− αi)ϕ̄(gω, x)) ≤ αigωD(gω), (6)
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otherwise it must be that gω /∈ Ri(gω, x). Define gψ ∈ G \ {gM} such that gψ ≤ c < gψ+1,

noting that ϕ̄(ξ, x) = 0 for all ξ ≤ gψ. There are two cases to consider: (i) gω ≤ gψ and (ii)

gω > gψ.

Case 1: gω ≤ gψ. Then, ϕ̄(gω, x) = 0, so

max
pi∈G

αipiD(pi)(1− ϕ̄(pi, x)) ≤ αigωD(gω) = αigωD(gω)(1− ϕ̄(gω, x))

≤ αigψD(gψ)(1− ϕ̄(gψ, x))

≤ max
pi∈G

αipiD(pi)(1− ϕ̄(pi, x)),

confirming the supposition. Thus, if gω ∈ Ri(gω, x), then gω ∈ P̃ (x,G).

Case 2: gω > gψ. Rearranging (6) yields

ϕ̄(gω, x) ≤ αi
1− αi

(gωD(gω)− gω−1D(gω−1)). (7)

If ‖G‖ < δ, then

gωD(gω)− gω−1D(gω−1) ≤ gωD(gω)− (gω − δ)D(gω − δ)

By the uniform continuity of ξD(ξ) on [0, ξm], choose δ such that

|ξD(ξ)− (ξ − δ)D(ξ − δ)| < 1− αi
αi

ϕ(c− τL).

Hence, if ‖G‖ < δ, then (7) implies that ϕ̄(gω, x) < ϕ(c − τL), a contradiction. Thus, it

cannot be that gω > gψ, so the lemma holds.

Lemma 5. If gω = p∗i (x,G), then gω−1 ∈ Ri(gω, x).

Proof. Suppose that gω = p∗i (x,G). Because p∗i (x,G) ∈ G, it must be that

gω−1D(gω−1)(αi + (1− αi)ϕ̄(gω, x)) = max
pi∈G

αiD(pi)(1− ϕ̄(pi, x)),

or the construction of p∗i (x,G) would have been perturbed such that p∗i (x,G) /∈ G (see

the proof of Proposition 2). By Lemma 4, gω ∈ Ri(gω, x) implies that gω ∈ P̃ (x,G), so

gω−1 ∈ Ri(gω, x).

Proof of Proposition 2.
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Proof. We first prove that, under A1 and A2, if ‖G‖ < δ, then Ri(gω, x) is the best response

correspondence. Suppose that ‖G‖ < δ < c. That p∗i (x,G) ∈ G follows from g0 = 0, which

implies that

g0D(g0)(1− ϕ̄(g1, x)) = 0,

while there is some g ∈ G with ∈ (0, c) guaranteeing that

max
pi∈G

αipiD(pi)(1− ϕ̄(pi, x)) ≥ gD(g) > 0.

If

gω∗(x)−1D(gω∗(x)−1)(αi + (1− αi)ϕ̄(gω∗(x), x)) < max
pi∈G

αipiD(pi)(1− ϕ̄(pi, x)),

then perturb the judo price by setting p∗i (x,G) = (gω∗(x) + gω∗(x)+1)/2. This, or any

perturbation in (gω∗(x), gω∗(x)+1) is necessary, as the proposition states that gω∗(x)−1 is a

best response to p∗i (x,G). In order for this perturbation to be well defined, it must be

ω∗(x) < M , which follows from Lemma 3.

A1 implies that ξD(ξ)(αi + (1− αi)ϕ̄(gω, x)) is strictly increasing in ξ. Thus,

Ri(gω, x) ⊃ {gω−1, gω} ∪ P̃ (x,G).

For Ri(gω, x) to be as in the statement of the proposition, two properties must be satisfied:

(i) if gω ∈ Ri(gω, x), then gω ∈ P̃ (x,G), and (ii) if gω = p∗i (x,G), then gω−1 ∈ Ri(gω, x).

The fact that P̃ (x,G) ⊂ Ri(gω, x) for gω ≤ p∗i (x,G) and gω−1 ∈ Ri(gω, x) for gω > p∗i (x,G)

follows directly from the construction of p∗i (x,G) and the fact that gω−1D(gω−1)(αi + (1−
αi)ϕ̄(gω, x)) is strictly increasing in ω. Lemmas 4 and 5 prove properties (i) and (ii),

respectively.

We now prove the two limiting statements. Let Gn be such that ‖Gn‖ → 0 as n →
∞. We first show that maxg∈Gn πRi (g, x) → maxξ π

R
i (ξ, x), i.e., the constrained maximal

residual profits converge to the unconstrained maximal residual profits as the grid becomes

arbitrarily fine.

Define gn ∈ Gn such that gn → g ∈ P̃ (x) and gn < g. The continuity of πRi on [0, c) ∪
(c,∞)×X, coupled with the fact that limξ→c− π

R
i (ξ, x) = πRi (c, x) implies that πRi (gn, x)→
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πRi (g, x). Thus,

lim
n→∞

max
g∈Gn

πRi (g, x) ≥ max
ξ
πRi (ξ, x),

while

max
g∈Gn

πRi (g, x) ≤ max
ξ
πRi (ξ, x)

as the unconstrained maximum must be weakly greater than the constrained maximum.

Therefore, maxg∈Gn πRi (g, x)→ maxξ π
R
i (ξ, x).

Next, define gn ∈ P̃ (x,Gn) such that gn → ξ. By definition, πRi (gn, x) = maxg∈Gn πRi (g, x)

and by the preceding argument, πRi (gn, x)→ maxpi π
R
i (pi, x). If ξ 6= c, then the continuity of

πRi guarantees that ξ ∈ P̃ (x). Now suppose that ξ = c. As πRi (c, x) = lim suppi→c π
R
i (pi, x)

and maxg∈Gn πRi (g, x)→ maxpi π
R
i (pi, x) implies that πRi (c, x) ≥ maxpi π

R
i (pi, x), ξ ∈ P̃ (x),

proving statement (i).

We now prove statement (ii). Let p∗i (x,G
n) → ξ∗. We will show that ξ∗ = p∗i (x). Define

ρ = (ξ∗ + p∗i (x))/2. The remainder of the proof proceeds in two cases.

Case 1: ξ∗ ≥ c.

Case 1a: ξ∗ < p∗i (x). It follows that there exists a value n∗ such that p∗i (x,G
n) < ρ for all

n > n∗. Choose such an n∗ and note that for all n > n∗ and all gnω ∈ Gn ∩ (ρ, p∗i (x)),

gnωD(gnω)(αi + (1− αi)ϕ̄(gnω, x)) > ρD(ρ)(αi + (1− αi)ϕ̄(ρ, x))

> max
g∈Gn

πRi (g, x).
(8)

The first inequality follows from the fact that ξD(ξ)(αi + (1 − αi)ϕ̄(ξ, x)) is increasing

in ξ by A1 and Lemma 1 and the second inequality follows from ρ > p∗i (x, g). Assign

gnω ∈ Gn ∩ (ρ, p∗i (x)) with gn → g < p∗i (x), where this set is nondegenerate for δ sufficiently

small. Because limn maxg∈Gn πRi (g, x) = maxξ π
R
i (ξ, x), it follows from (8) that

gD(g)(αi + (1− αi)ϕ̄(g, x)) ≥ max
ξ
πRi (ξ, x). (9)

However, as g < p∗i (x),

gD(g)(αi + (1− αi)ϕ̄(g, x)) < p∗i (x)D(p∗i (x))(αi + (1− αi)ϕ̄(p∗i (x), x)).
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and the definition of the judo price p∗i (x) implies that,

p∗i (x)D(p∗i (x))(αi + (1− αi)ϕ̄(p∗i (x), x)) ≤ max
ξ
πRi (ξ, x), (10)

Collectively, (8)-(10) imply that

max
ξ
πRi (ξ, x) ≤ gD(g)(αi + (1− αi)ϕ̄(g, x))

< p∗i (x)D(p∗i (x))(αi + (1− αi)ϕ̄(p∗i (x), x)) ≤ max
ξ
πRi (ξ, x),

a contradiction. Thus, ξ∗ ≥ p∗i (x).

Case 1b: ξ∗ > p∗i (x). Let n∗ be such that p∗i (x,G
n) < ρ and note that (by an analogous

argument to case 1a) for all n > n∗ and all gnω ∈ Gn ∩ (p∗i (x), ρ),

gnωD(gnω)(αi + (1− αi)ϕ̄(gnω, x)) < ρD(ρ)(αi + (1− αi)ϕ̄(ρ, x))

< max
g∈Gn

πRi (g, x).

Now let gnω ∈ Gn ∩ (ρ, p∗i (x)) with gn → g > p∗i (x). It follows that

gD(g)(αi + (1− αi)ϕ̄(g, x)) ≤ max
ξ
πRi (ξ, x).

The definition of p∗i (x) implies that

gD(g)(αi + (1− αi)ϕ̄(g, x)) > max
g∈Gn

πRi (g, x),

which further implies that maxξ π
R(ξ, x) > maxξ π

R(ξ, x), a contradiction.

Case 2: ξ∗ < c. Recall that p∗i (x) ≥ c. Define n∗ such that p∗i (x,G
n) < ρ for all n > n∗.

Then let gnω ∈ Gn ∩ (ρ, p∗i (x)) and note that

gnω−1D(gnω−1)(αi + (1− αi)ϕ̄(gnω, x)) ≥ max
g∈Gn

πRi (g, x).

Because gnω < c,

gnω−1D(gnω−1)(αi + (1− αi)ϕ̄(gnω, x)) = αig
n
ω−1D(gnω−1)

< αicD(c)

= πRi (c, x)

≤ max
g∈Gn

πRi (g, x),

a contradiction. Thus, ξ∗ ≥ c and ξ∗ = p∗i (x), completing the proof.
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Proof of Proposition 3.

Proof. As each p∗i (x) ≥ c, the result holds trivially if p∗−i(x) = c. Suppose that p∗i (x) ∈
(c, ξm). By the continuity of D(ξ) and ϕ̄(ξ, x) on (c,∞)×X, πF−i(p

∗
−i(x), x) = πR−i(x). That

is,

p∗−i(x)D(p∗−i(x))(α−i + (1− α−i)ϕ̄(p∗−i(x), x)) = max
p−i

α−iD(p−i)(1− ϕ̄(p−i, x)).

Define the function

f(ξ, α) = ξD(ξ)(α+ (1− α)ϕ̄(ξ, x))−max
ζ
αζD(ζ)(1− ϕ̄(ζ, x)),

so that p∗−i(x) is defined by f(p∗−i(x), α−i) = 0. Note that f(ξ, α) is strictly increasing in ξ.

It therefore suffices to show (by the implicit function theorem) that f(ξ, α) is decreasing in

α:

∂

∂α
f(ξ, α) = ξD(ξ)(1− ϕ̄(ξ, x))−max

ζ
ζD(ζ)(1− ϕ̄(ζ, x)) ≤ 0.

If α−ip
∗
−i(x)D(p∗−i(x))(1 − ϕ̄(p∗−i(x), x)) = maxζ αζD(ζ)(1 − ϕ̄(ζ, x)), then by definition,

p∗−i(x) ∈ P̃ (x). Thus

p∗−i(x)D(p∗−i(x))(α−i + (1− α−i)ϕ̄(p∗−i(x), x)) = α−ip
∗
−i(x)D(p∗−i(x))(1− α−iϕ̄(p∗−i(x), x)),

which holds only if ϕ̄(p∗−i(x), x) = 0, which requires p∗−i(x) < c. Because p∗−i(x) > c,

∂
∂αf(ξ, α) < 0. Hence, p∗i (x) > p∗−i(x).

Proof of Proposition 4.

Proof. Suppose that x first order stochastically dominates x′. Lemma 1(iii) implies that

ϕ̄(ξ, x) ≤ ϕ̄(ξ, x′) for all ξ. Thus,

ξD(ξ)(αi + (1− αi)ϕ̄(ξ, x)) ≤ ξD(ξ)(αi + (1− αi)ϕ̄(ξ, x′))

and

max
pi

αipiD(pi)(1− ϕ̄(pi, x)) ≥ max
pi

αipiD(pi)(1− ϕ̄(ξ, x′)).
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If

ξD(ξ)(αi + (1− αi)ϕ̄(ξ, x′)) ≤ max
pi

αipiD(pi)(1− ϕ̄(pi, x
′)), (11)

then

ξD(ξ)(αi + (1− αi)ϕ̄(ξ, x)) ≤ max
pi

αipiD(pi)(1− ϕ̄(pi, x)). (12)

Therefore

sup

{
ξ ≤ ξm : ξD(ξ)

(
αi + (1− αi)ϕ̄(ξ, x′)

)
< max

pi
αipiD(pi)

(
1− ϕ̄(pi, x

′)
)}

≤ sup

{
ξ ≤ ξm : ξD(ξ) (αi + (1− αi)ϕ̄(ξ, x)) < max

pi
αipiD(pi) (1− ϕ̄(pi, x))

}
,

and so by definition, p∗i (x) ≥ p∗i (x′).

Now consider the case in which prices are constrained to a grid G with ‖G‖ < δ, where δ > 0

is sufficiently small such that each firm’s best response correspondence is as in Proposition

2. Since ϕ̄(ξ, x) ≤ ϕ̄(ξ, x′), it follows that for all gω ∈ G,

gω−1D(gω−1)(αi + (1− αi)ϕ̄(gω, x)) ≤ gω−1D(gω−1)(αi + (1− αi)ϕ̄(gω, x
′))

and

max
pi∈G

αipiD(pi)(1− ϕ̄(pi, x)) ≥ max
pi∈G

αipiD(pi)(1− ϕ̄(ξ, x′)).

Thus, by an identical argument, the unperturbed critical price p∗i (x,G) ≥ p∗i (x
′, G). Fur-

thermore, the same argument is valid given strict inequalities in (11) and (12). Therefore,

if p∗i (x
′, G) is perturbed as in the proof of Proposition 2, then either p∗i (x,G) > p∗i (x

′, G) or

p∗i (x,G) is also perturbed and the inequality holds.

Proof of Proposition 5.

Proof. First, note that the case in which c = c∗ (p) can be ignored, as the grid may be

perturbed so that no prices satisfy this relationship. Let pt = p for all t ∈ [T, T + ε).

By the definition of c∗(p), search has a negative expected payoff if and only if c > c∗(p).

Consequently, a consumer’s expected payoff is strictly increasing in her threshold τ when

c > c∗(p) as the probability of search is decreasing in the threshold τ .
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Under the best response dynamic, if c > c∗(p), then xtL is increasing and xtk is decreasing

for all k 6= L. By an analogous argument, if c < c∗(p), then xt0 is increasing and xtk is

decreasing for all k 6= 0. Thus, the result holds under the best response dynamic.

Now, consider the imitation dynamic. Suppose c > c∗(p). Let rk` = rk`(E[υ|pt, τk], E[υ|pt, τ`]).
Then by A3, rk` > r`k if and only if k < ` because search is not profitable when c > c∗(p).

Recall that the net flow of xt under the imitation dynamic is

ẋtk =
∑

`
xt`ρ`k − xtk

∑
`
ρk`

= xtk
∑

`
xt`(r`k − rk`). (13)

We now show that for all t, t′ ∈ [T, T + ε) with t > t′,∑k

`=0
xt` ≤

∑k

`=0
xt
′
`

for all k = 0 : L. It is sufficient to show that, for all a = 0 : L,∑a

k=0
ẋtk ≤ 0.

For all a = 0 : L and by (13),∑a

k=0
ẋtk =

∑a

k=0
xtk
∑

`
xt`(r`k − rk`)

=
∑a

k=0

∑a

`=0
xtkx

t
`(r`k − rk`)︸ ︷︷ ︸

=0

+
∑a

k=0

∑L

`=a+1
xtkx

t
`(r`k − rk`)

=
∑a

k=0

∑L

`=a+1
xtkx

t
`(r`k − rk`).

As argued above, r`k > rk` for all ` = a+ 1 : L and all k = 0 : a < `. Hence,∑a

k=0
ẋtk =

∑a

k=0

∑L

`=a+1
xtkx

t
`(r`k − rk`) < 0,

completing this case. The proof for c < c∗(p) proceeds identically.

The following Lemma is used to prove Theorem 1.

Lemma 6. Under A1, A2, and C1, there exists a δ > 0 such that if ‖G‖ < δ, then

there exists a neighborhood N (eL) of eL such that c < c∗(p) for all x ∈ N (eL), where

pi = inf P̃ (x,G) and p−i = p∗i (x,G) = p∗(x,G) is the critical grid-constrained judo price.
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Proof. First, we prove that there exists a neighborhood N (eL) of eL such that P̃ (x,G) =

P̃ (eL, G) for all x ∈ N (eL). Take g ∈ P̃ (eL, G) and define

∆ = πRi (g, eL)− max
g′∈G\P̃ (eL,G)

πRi (g′, eL)

as the difference between the maximal constrained residual profits and the second-best.

Because πRi is continuous in x, there exists a neighborhood N (eL) of eL such that

πRi (g, x) >πRi (g, eL)− ∆

2

πRi (g′, x) <πRi (g′, eL) +
∆

2

for all g′ ∈ G \ P̃ (eL, G) and all x ∈ N (eL). Therefore, πRi (g, x) > πRi (g′, x) for all

x ∈ N (eL) and g′ ∈ G \ P̃ (eL, G). Hence, g ∈ P̃ (x,G) and P̃ (x,G) = P̃ (eL, G). As eL first

order stochastically dominates all x ∈ X, p∗(x,G) ≤ p∗(eL, G) for all x ∈ X by Proposition

4.

We now prove that, for all x ∈ N (eL), c < c∗(p) when pi = inf P̃ (x,G) and p−i = p∗i (x,G) =

p∗(x,G). By C1, c < min{c∗((p∗(eL), inf P̃ (eL))), c∗((inf P̃ (eL), p∗(eL)))}. Recall that c∗(p)

is defined by

u(D(min p),min p)− c∗(p) = αu(D(p1), p1) + (1− α)u(D(p2), p2). (14)

The continuity of u and D imply that (14) is decreasing in min p and increasing in max p.

To illustrate this relationship, suppose that p1 ≤ p2. Then, (14) can be rearranged as

c∗(p) = (1− α)(u(D(p1), p1)− u(D(p2), p2)),

which by inspection is decreasing in p1 = min p and increasing in p2 = max p.

Set ε′ = c∗(p) − c for the prices given in the statement of the Lemma and define x in

the closure of N (eL) such that x is first order stochastically dominated by all x ∈ N (eL).

Fix ε > 0. Define δ(ε) such that if both |pi − p′i| ≤ δ(ε) and |p−i − p−i| ≤ δ(ε), then

|c∗(p) − c∗(p′)| < ε. By Proposition 2, δ′ can be chosen such that if ‖G‖ < δ′, then

|p∗(x,G) − p∗(eL)| ≤ δ(ε) and min P̃ (eL, G) ≥ inf P̃ (eL) − δ(ε). By Proposition 4, if

|p∗(x,G) − p∗(eL)| ≤ δ(ε), then |p∗(eL, G) − p∗(eL)| < δ(ε). Because c∗(p) is decreasing
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in min p and min P̃ (x,G) = min P̃ (eL, G) ≥ inf P̃ (eL) − δ(ε), a well-defined neighborhood

N (eL) exists for every ε′ such that

min{c∗(p∗(x,G),min P̃ (x,G)), c∗(min P̃ (x,G), p∗(x,G))}

> min{c∗((p∗(eL), inf P̃ (eL))), c∗((inf P̃ (eL), p∗(eL)))} − ε. (15)

Assigning ε < min{c∗((p∗(eL), inf P̃ (eL))), c∗((inf P̃ (eL), p∗(eL)))}− c, which is well defined

by C1, implies that c < min{c∗(p∗(x,G),min P̃ (x,G)), c∗(min P̃ (x,G), p∗(x,G))} for all

x ∈ N (eL) and G such that ‖G‖ < δ′.

Proof of Theorem 1.

Proof. Suppose that ‖G‖ < δ < c, where δ is such that best response correspondence for

each firm is as stated in Proposition 2.

First, we prove statement (i) (the prices do not converge). To the contrary, suppose that

pt → (gω, gω′). Without loss of generality, assume that gω ≤ gω′ . By Proposition 2, for

some time T > 0, it must that (i) gω ≤ p∗2(x
t, G) for all t > T , (ii) gω′ ∈ P̃ (x,G), and (iii)

gω ∈ {gω′ , gω′−1}. As |pt1 − pt2| ≤ δ < c for all t > T , Proposition 5 implies that xt → eL as

t→∞ because at such prices, ẋtL → 0 if and only if xL → 1. Consider two cases.

Case 1: gω = gω′ . In this case, it must be that gω ≤ p∗1(x
t, G) for all t > T . Because

p∗i (x,G) ≤ min P̃ (x,G) for all x ∈ X, p∗(xt, G) = min P̃ (xt, G) for all t > T . Hence,

min{c∗((p∗(xt, G),min P̃ (xt, G))), c∗((min P̃ (xt, G), p∗(xt, G)))} = 0 < c

for all t > T , which contradicts Lemma 6.

Case 2: gω = gω′−1. In this case, it must be that gω′ ≥ p∗1(x
t, G) for all t > T . It follows

that either p∗(xt) = gω or that p∗(xt) = gω′ for all t > T . Either way,

min{c∗((p∗(xt, G),min P̃ (xt, G))), c∗((min P̃ (xt, G), p∗(xt, G)))} ≤ δ < c

for all t > T , which contradicts Lemma 6. Therefore, the prices do not converge.

Next, we prove statement (ii) (in the limit, prices are bounded). By Proposition 2, given

a distribution xt, neither firm i will ever choose a price pti < gω−1 when gω = p∗i (x,G).
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Thus, by Propositions 2 and 4, neither firm i will ever choose a price below pti < gω−1 when

gω = p∗i (e0, G). Set gω = p∗i (e0, G) and suppose that p∗i (e0, G) = p∗(e0, G). If pti = gω′ ,

then pt−i ≥ gω′−1. As firm i will never choose a price pti < gω−1, then there will be some

time T such that firm i eventually chooses a price pti ≥ gω−1. It follows that for all times

t > T , pti ≥ gω−1 and pt−i ≥ gω−2. Therefore, Proposition 2 guarantees that for sufficiently

small δ > 0, if ‖G‖ < δ, then |p∗i (e0, G) − p∗i (e0)| < ε, and so given such a δ, pti ≥ p − ε
for both firms i and all t > T . That pti ≤ ξm for all t > T follows directly from A1 (and

maxG = ξm).

Lastly, we prove statement (iii) (infinite cycles between e0 and eL). To prove this statement,

it is sufficient to show that for any ε′ > 0 and any neighborhoods N (e0) of e0 and N (eL)

of eL, for all T , there is a positive probability that (a) xt ∈ N (eL) for some t > T , (b)

p
t′n
i → ξ′ ≥ p̂ − ε for some t > T , (c) xt ∈ N (e0) for some t > T , and (d) ptni → ξ ≤ p + ε

for some t > T . We will jointly demonstrate (a) and (b) followed by (c) and (d).

Proposition 2 dictates that at some time t, firms will set their prices such that pti = gω and

pt−i = gω−1 for some ω. Given such prices, Proposition 5 implies that the distribution of

consumer thresholds will be shifting toward eL. Under the best response dynamic

ẋtL = 1− xti,

while under the imitation dynamic

ẋtL = xtL
∑L

`=0
xt`(r`L − rL`).

Given either dynamic, if the prices are fixed at pti = gω and pt−i = gω−1 for some ω, then

ẋtL → 0 if and only if xL → 1. If these prices were to remain fixed, then xt → eL.

Let N (eL) be a neighborhood of eL. Define

T̃ = sup
p∈G2

sup
xT∈X

inf{t ≥ 0 : xT+t ∈ N (eL) given p}.

Given any time T , any prices gω and gω−1, and any xT ∈ X, it follows that if pti = gω

and pt−i = gω−1 for all t > T , then xT+t ∈ N (eL) for all t > T̃ . Given the stickiness of

pricing, for any prices pTi = gω, pT−i = gω−1, and any t′ > T̃ , there is a positive probability
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that pT+ti = gω and pT+t−i = gω−1 for all t < t′. Thus, there is a positive probability that

xt ∈ N (eL) for some t > T .

Choose N (eL) such that for all x ∈ N (eL), p∗i (x,G) = p∗i (eL, G) for each firm i and

P̃ (x,G) ⊆ P̃ (eL, G) (By Lemma 6, this neighborhood is well defined). If xT ∈ N (eL),

define

T̃ (xT ) = inf
p∈G2

inf{t ≥ 0 : xT+t /∈ N (eL) given p}.

Then, given any time T such that xT ∈ N (eL), let Q denote the maximum number of

sequential price changes by the firms according to the best response correspondence that

are necessary to reach a pair of prices such that pi ∈ P̃ (x,G) and p−i = gω−1, where

gω = p−i. There is a positive probability that the firms are able to make Q sequential

price changes in the time interval (T, T + T̃ (xT )). If δ is chosen sufficiently small so that

inf P̃ (eL, G) ≥ inf P̃ (eL) − ε, then there is a positive probability that for either firm i, for

some time t > T , pti ≥ p̂− ε.

Next, using Lemma 6, choose δ and N (eL) such that if ‖G‖ < δ and x ∈ N (eL), then

c < c∗(p), where pi = inf P̃ (x,G) and p−i = p∗i (x,G) = p∗(x,G). Given xT ∈ N (eL), there

will be some t > T where pt is such that c < c∗(pt). Let N (e0) be a neighborhood of e0 and

define

T̃0 = sup
p∈G2

sup
xT∈X

inf{t ≥ 0 : xT+t ∈ N (e0) given p}.

Then given c < c∗(pT ), for any t′ > T̃0 there is a positive probability that the firms prices

remain fixed for all t ∈ [T, t), and thus that xT+t
′ ∈ N (e0).

Finally, choose N (e0) and δ such that for all x ∈ N (e0), p
∗(x,G) = p∗(e0, G) < p∗(e0) + ε.

Then define for all xT ∈ N (e0)

T̃0(x
T ) = inf

p∈G2
inf{t ≥ 0 : xT+t /∈ N (eL) given p}

and let Q0 be the maximum number of sequential price changes by the firms according

to the best response correspondence that are necessary to reach a pair of prices such that

pi = gω = p∗(x,G) and p−i ∈ {gω−1, gω+1}. Given any xT ∈ N (e0) there is a positive
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probability that the firms are able to make Q0 sequential price changes in the time interval

(T, T + T̃ )0(x
T )), and thus that pti < p∗(eL, G) + ε for each firm i for some t > T .

The following Lemma is used to prove Theorem 2.

Lemma 7. Under A1, A2, and C2’, there exists a δ > 0 such that if ‖G‖ < δ, then

there exists a neighborhood N (eL) of eL such that c > c∗(p) for all x ∈ N (eL), where

pi = sup P̃ (x,G) and p−i = p∗i (x,G) = p∗(x,G).

Proof. The proof of this lemma mirrors that of Lemma 6. By an analogous argument to

Lemma 6 there exists a neighborhood N (eL) of eL such that P̃ (x,G) = P̃ (eL, G). As in the

proof of Lemma 6, eL first order stochastically dominates all x ∈ X, so p∗(x,G) ≤ p∗(eL, G)

for all x ∈ X.

We now prove that, for all x ∈ N (eL), c > c∗(p) when pi = max P̃ (x,G) and p−i =

p∗i (x,G) = p∗(x,G). By C2, c > min{c∗((p∗(eL), sup P̃ (eL))), c∗((sup P̃ (eL), p∗(eL)))}. Fix

ε > 0. Again, define δ(ε) such that if both |pi − p′i| ≤ δ(ε) and |p−i − p−i| ≤ δ(ε), then

|c∗(p) − c∗(p′)| < ε. By Proposition 2, δ′ can be chosen such that if ‖G‖ < δ′, then

max P̃ (eL, G) ≥ sup P̃ (eL) − δ(ε). Because c∗(p) is decreasing in min p and thus p∗(x,G)

while max P̃ (x,G) = max P̃ (eL, G) for all x ∈ N (eL),

min{c∗(p∗(x,G),max P̃ (x,G)), c∗(max P̃ (x,G), p∗(x,G))}

< {c∗((p∗(eL), sup P̃ (eL))), c∗((sup P̃ (eL), p∗(eL)))}+ ε.

Assigning ε < c−min{c∗((p∗(eL), sup P̃ (eL))), c∗((sup P̃ (eL), p∗(eL)))}, which is well defined

by C2′, implies that c > min{c∗(p∗(x,G),max P̃ (x,G)), c∗(max P̃ (x,G), p∗(x,G))} for all

x ∈ N (eL) and G such that ‖G‖ < δ′.

Proof of Theorem 2.

Proof. Suppose that ‖G‖ < δ < c, where δ is such that the best response correspondences

are as stated in Proposition 2. We first show that xt → eL. By Proposition 2, there exists

a time T ≥ 0 such that pi = gω and p−i ∈ {gω, gω±1}. Hence, |pi − p−i| < c. Given price

stickiness, there is positive probability that these prices will remain in this interval until
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some time T ′ > T . By proposition 5, for a sequence of times {tn} ⊂ [T ′, T ), xtn first order

stochastically dominates xtn′ for all n′ > n. As eL first order stochastically dominates all

x ∈ X, there exists a t′ ∈ [T ′, T ) such that a state xt
′ ∈ N (eL) is reached with positive

probability, where N (eL) is chosen such that Lemma 7 applies. Lemma 7 and Proposition

5 imply that eL is an absorbing state. Hence, xt → eL.

Statement (ii) follows from an identical argument to the proof of statement (ii) of Theorem 1

but fixing xt ∈ N (eL). Statement (iii) then follows from the best response correspondences

of Proposition 2.

Proof of Proposition 6.

Proof. As τL → ξm − inf suppϕ, ξm ≤ τL + σt for all σt. Hence, ϕ(ξm − τL) → 0 as

τL → ξm − inf suppϕ. Given state x = eL and τL → ξm − inf suppϕ,

πR(ξ, eL) = αiξD(ξ) (1− ϕ(ξ − τL)) ≤ αiξmD(ξm) = πRi (ξm, eL)

Hence, P̃ (eL) = {ξm}. Therefore, the judo price is

p∗i (eL) = sup {ξ ≤ ξm : ξD(ξ) (αi + (1− αi)ϕ(ξ − τL)) < αiξ
mD(ξm)} .

Evaluating firm i’s front-side profits as pi → ξm and p−i = ξm yields

αiξ
mD(ξm) = ξmD(ξm)(αi + (1− αi)ϕ(ξm − τL)).

Hence, p∗i (eL) = ξm = sup P̃ (eL). That C2 holds for sufficiently large τL follows immedi-

ately.

Suppose that ‖G‖ < δ < c so that each firm’s best response correspondence is as in Propo-

sition 2. By continuity, for every ε′ > 0, There exists a neighborhood N (ξm − inf suppϕ)

such that if τL ∈ T (ξm− inf suppϕ), then p∗i (eL) > ξm− ε. Let τ̄ = infN (ξm− inf suppϕ).

Then, for all τ > τ̄ , p∗i (eL) > ξm − ε. For a sufficiently small δ, |p∗i (eL, G) − p∗i (eL)| is

sufficiently small such that p∗(eL, G) ≥ p∗i (eL, G) > ξm − ε.

As A1-A3 and C2′ are all satisfied, Theorem 2 implies that xt → eL. Hence, there exists a

time T ≥ 0 such that for all t > T , pti > ξm − ε.
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Proof of Theorem 3.

Proof. Suppose A1-A3 and C3 are satisfied and set δ sufficiently small such that the best

response correspondences are as in Proposition 2. By C3, given a neighborhood N (eL),

p∗(x) = sup P̃ (x) = c for all x ∈ N (eL). As C3 implies C2, there exists a time T ≥ 0 such

that xt ∈ N (eL) for all t ≥ T . For any prices pt = (pti, p
t
−i) ≥ (c, c), Proposition 2 implies

that the two firms will undercut each other at each revision opportunity until pt = (c, c).

Because P̃ (x) = {c} for all x ∈ N (eL), there exists a time T ′ ≥ T such that pt = (c, c) for

all t > T ′.
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