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1 Introduction

As technology evolves and the world becomes increasingly interconnected, a better understanding

of network externalities becomes increasingly important. Meta’s market cap is (approx.) $1.65

trillion, Match Group Inc.’s is over $7 billion, and the various online videogaming platforms total

over $1 trillion (Yahoo Finance, 2025).1 A user’s willingness to pay for access to a platform depends

on the number of other users—this statement is true but lacking. A user’s willingness to pay for

access to a platform also depends on the characteristics of other users. Similarly, willingness to

participate in networks such as open source software development communities depends on user

composition.

Network size effects are very well studied.2 Less attention has been devoted to understanding

how the composition of the installed base influences the users’ valuations of platforms and thus

platforms’ responses to user composition effects.3 The effects of not accounting for composition

are consequential. First, ignoring composition effects distorts the pricing strategies of platforms,

creating a wedge between expected and observed prices. Second, ignoring composition effects masks

a second decision making margin for platforms: product placement (or in competitive environments,

product differentiation) over the network externality. If composition is valuable, then platforms

will actively engage in efforts to both influence their composition and shape user preferences.

When unable to engage in price discrimination to influence user choice, the platforms engage in

nonpricing strategies to exert control over their composition. These nonpricing strategies interact

with pricing strategies, altering our understanding of platform behavior. This paper develops a

tractable representation of heterogeneity, which precisely characterizes the changes in predicted

behavior when platforms internalize composition effects. Given that there are differences between

traditional industries and these digital platforms in the new economy, new policy protocols must

be developed to address the potential market failures associated with platforms and the industries

that interact with them.

1These values are current as of May 13 and are sourced from Yahoo Finance. Online videogaming platforms
include EA, Microsoft, Nintendo, Roblox, Sony, and Tencent.

2See Shy (2001), Farrell and Klemperer (2007), Birke (2009), and Shy (2011) for surveys.
3Exceptions analyzing composition effects include games played on topological networks. See, for example, Goyal

(2009) and Jackson (2010). Unlike the traditional topological models, I assume neither a binary nor symmetric
graph (many other works relax those assumptions as well). Within the marketing literature, Algesheimer et al.
(2005) empirically demonstrates the effects of composition using European automotive clubs. Basu (1989) is also
noteworthy in his discussion of status goods, such as awards, modeling the consumption profile of commodities for
which, “[. . . ] the utility [. . . ] depends on who its other recipients (or consumers) are” Basu (1989, p. 654).
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This paper develops a model of duopoly competition between single-sided platforms (platforms

that charge a single price to all users). Consumers are endowed with heterogeneous characteristics

and preferences, including heterogeneous preferences over network composition. I use the model to

analyze how incorporating composition alters our understanding of platforms and competition in

these industries.

The model provides two methodological contributions. First, I express a gross network valuation

function with two arguments: an unadjusted network size and an adjusted network composition.

This representation allows for a clean comparative static analysis that decomposes size and com-

position effects suitable for empirical estimation. With this decomposition, I can precisely charac-

terize the effects of changes in the installed base on prices and the effects of changes in nonpricing

strategies on composition and therefore prices. Second, I develop a tractable metric for measuring

heterogeneity on a platform. This heterogeneity-weighted network effect reduces the high dimen-

sional problem of measuring heterogeneity into a single value. For example, in online dating users

vary by characteristics such as age, race, religion, gender, sexual orientation, and location. The

value of adding an additional user depends on both the user’s characteristics and the characteris-

tics of current users. The heterogeneity-weighted network effect aggregates this information to a

single real value. These two features are built using only observable information, allowing for both

theoretical and empirical identification of the sign and magnitudes of the comparative statics and

marginal effects.

The model incorporates three features, which allow it to better capture how platforms operate in

the new economy.

(i) Heterogeneity. Individuals are endowed with both heterogeneous preferences and heteroge-

neous preferences over heterogeneity (composition effects).

(ii) Pricing strategies. Firms incorporate both a size and composition effect into their pricing

strategies.

(iii) Nonpricing strategies. Firms have nonprice tools at their disposal to strategically leverage

their installed base through coordinating expectations and influencing composition (cultiva-

tion).

Demographic characteristics of current users of an online dating platform affect the platform’s value

to a prospective user. In online video gaming, a skilled player of a massively multiplayer online
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video game receives positive utility when there are many other players online, but receives an extra

payoff if many of the other players are skilled as well. The skilled player may discount the value if

many of the other players are beginners. Traits valued subjectively, such as competitiveness and

sportsmanship, also influence value. Including heterogeneity and composition effects dramatically

alters the properties of platforms. A composition effect incentivizes platforms to strategically alter

their composition, affecting the pricing statics.

I show that a platform’s price is generally nonmonotonic in the size of its installed base. When

composition matters, there is no direct relationship between a platform’s price and its size, as its

composition can have a greater impact on prices than its size. Moreover, changes in size often induce

changes in composition. Platforms with identical features can have identically sized installed bases

with a significant degree of price dispersion.4 Market share and market dominance are thus no longer

analogous to platform success. Instead,like prices, profitability can vary inversely with market share

rather than moving with it. Small platforms can both survive and thrive given the appropriate

composition of users. While this is obvious when platform target users vertically (e.g., by income),

it is not obvious a priori that such an inverse relationship persists under horizontal differentiation.

Predicting the effects of changes in installed bases becomes an empirical question rather than a

theoretical question. Such an environment reverses our understanding of the dominant-firm fringe-

firm paradigm: the fringe can be strategically small to leverage users’ composition valuations, while

larger platforms rely on size to overcome deficits in composition.

With composition effects, multiple equilibria exist, even with the same market shares. Suppose

the market is split evenly between two platforms. If their composition is identical, then they will

charge identical prices. Shuffling the consumers around can increase each platform’s value through

composition without altering the size of each installed base, uniformly raising prices. This point

reiterates the idea that market share and traditional measures of “dominance” can be misleading.

Beyond prices, a component of each platform’s strategy is to shape the composition of its user

base and the value of composition in the population at large, through I focus only on the first.

When platforms can price discriminate, they accomplish this task using selection-by-indicators.

In many cases, such discrimination is infeasible, so the platforms rely on nonpricing strategies to

4This price dispersion is attributable to differences in the composition of the platforms’ installed bases, unlike
much of the price dispersion literature, which relies on asymmetric or incomplete information. See, for example, Salop
and Stiglitz (1977), Varian (1980), Burdett and Judd (1983), Stahl (1989), Sorensen (2000), and Baylis and Perloff
(2002). Injecting information or decreasing the costs of information acquisition would not resolve price dispersion
driven by composition effects.
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influence composition. I call this strategy cultivation. Cultivation injects a new feedback loop

into the relationship between installed base and prices, directly influencing consumer expectations.

Returning to the online dating platforms example, platforms such as ChristianMingle and JDate

cultivate to coordinate expectations over religion. The League and Raya cultivate over educational

and social elitism (e.g., wealth, education, and celebrity status). In video game markets, Nintendo

has cultivated a smaller but more valuable tight-knit network than its competitors (Shankar and

Bayus, 2003).

At the outset, platforms can influence consumers’ initial purchasing decisions through a costly

investment, cultivating across the characteristics consumers care about.5 Together, composition

effects and cultivation are able to explain the presence of multiproduct firms in platform mar-

kets. Without composition, a firm cannibalizes its demand by splitting a single platform into

multiple platforms unless mediating circumstances such as diseconomies of scale are present. With

composition effects, these splits can be value-enhancing, increasing each user’s willingness to pay

even though the platform is smaller. Cultivation allows for better market segmentation, further

enhancing the value of multiple platforms.

Online dating platforms are the quintessential example of a marketplace in which users hold het-

erogeneous preferences over heterogeneity, platforms are willing and able to cultivate such hetero-

geneity, and users face identical prices (price discrimination generally occurs only through rate of

time preferences). The network value of a dating platform depends on both the number of potential

matches and the traits of potential matches. Not all potential matches are valued equally. Hitsch

et al. (2010b) show that users prefer homogeneity over a fairly large subset of characteristics such

as race and religion. A preference for homogeneity along racial lines is also shown in Fisman et al.

(2008). Hitsch et al. (2010a,b) and Fisman et al. (2008) collectively show that there are differences

between men and women with respect to how various characteristics, such as income and education

are valued. Internalizing that both size and composition effects are significant, platforms leverage

their networks to increase profits through selective membership and matching algorithms. Hence,

heterogeneous preferences over heterogeneity is an empirical regularity that should be incorporated

This paper is not the first to broadly consider heterogeneity and composition, though it is the first

5In a dynamic environment, which I discuss in Section ??, such cultivation creates path dependence, which the
firms can leverage by augmenting the dynamics such that the probability of entering a disadvantageous state in the
long run becomes vanishingly small. The firms can also use cultivation to either reinforce or eliminate preferences over
composition. Thus, cultivation alters many established long run predictions, such as those in Mitchell and Skrzypacz
(2006) and Cabral (2011).
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to my knowledge to consider horizontal horizontal composition effects within a single side of a plat-

form.6 This paper is, however, among the first to incorporate composition, pricing, and nonpricing

strategies into a single framework. For example, An and Kiefer (1995), Damiano and Li (2007),

Chandra and Collard-Wexler (2009), Athey and Ellison (2011), Henkel and Bock (2013), and Marx

and Schummer (2021) all incorporate aspects of heterogeneity and pricing strategies. Through com-

patibility, Katz and Shapiro (1985), Farrell and Saloner (1985, 1986), Markovich (2008), Markovich

and Moenius (2009), and Chen et al. (2009) incorporate nonpricing strategies. Besides compatibil-

ity, the industrial organization literature on platforms has largely ignored nonpricing strategies.7

Much of the previous industrial organization literature assumes that network benefits are (i) ho-

mogeneous among users and (ii) a function only of the size of the installed base. Exceptions to (i)

are found in a few areas. An and Kiefer (1995) and Henkel and Bock (2013) analyze local networks

where individuals receive different network benefits. de Palma and Leruth (1996) and Janssen and

Mendys-Kamphorst (2007) study network goods where individuals have heterogeneous (vertical)

valuations for the networks. Weil (2010), Gomes and Pavan (2011), and White and Weyl (2016)

consider heterogeneous (vertical) valuations in two-sided markets of platform competition. This

paper considers only single-sided platforms. The current paper, along with Marx and Schummer

(2021) present exceptions to both (i) and (ii) though Marx and Schummer (2021) considers only

monopolistic two-sided platforms.8 Larger platforms either always set higher prices or always set

lower prices. It is the horizontal composition effects influencing the platform value that introduce

the non-monotonicities.9

The standard models of platforms, such as Katz and Shapiro (1985), Fudenberg and Tirole (2000),

Doganoglu (2003), those presented in the surveys Farrell and Klemperer (2007), Shy (2011), and

Cabral (2011), show that absent external forces, e.g., nonlinear pricing regulations à la Laffont

et al. (1988a,b) or switching costs Chen and Sacks (2025), the feedback loop between prices and

6Chandra and Collard-Wexler (2009) and Athey and Ellison (2011) both incorporate heterogeneity on each side
of a two-sided market, but composition plays no role within a side. Damiano and Li (2007) considers unidimensional
heterogeneity on each side and price discrimination. White and Weyl (2016) develops a monopoly model of two-sided
platforms along the lines of Laffont et al. (1988a,b), incorporating vertical heterogeneity of users (income). Marx and
Schummer (2021) study two-sided monopoly matching markets with unidimensional vertical heterogeneity. Veiga
et al. (2017) study the problem of platform design under a vertically heterogeneous population, with composition
relevant only to the platform designer.

7One noteworthy exception is in format selection by radio stations. In two-sided markets, radio stations select a
genre / format that appeals to a particular group of listeners, which influences the class of potential advertisers. See,
for example, Waldfogel (2003), Sweeting (2010), and Jeziorski (2014).

8Although there is a large literature on matching platforms and heterogeneity, this body of work has not integrated
platform pricing .See Marx and Schummer (2021) and the citations therein for details.

9Exceptions exist in the switching cost literature. See, for example, Chen and Sacks (2025).
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consumer expectations vis à vis installed base is monotonic.10 Larger platforms always set higher

prices or always set lower prices.

Though the industrial organization literature has not studied cultivation, religious and identity-

based organizations have been observed cultivating their respective populations. Many models

within the economics of religion literature have incorporated aspects of heterogeneity and nonpricing

strategies, including Iannaccone (1992, 1994), Berman (2000), McBride (2008, 2015), Carvalho,

Koyama and Sacks (2017), Carvalho and Sacks (2021), Carvalho and Sacks (2024), and Carvalho,

Rubin and Sacks (2024). I apply these principles to the platforms literature and show that, even

in the case of private goods—where free-riding is not an issue—similar incentives apply. Unlike

other nonpricing strategies in the network and platforms literature such as compatibility, third-

party content, and first-party content, cultivation only affects the network externality offered by

the platform and not the value of the platform itself.

Similarly, the literature on the provision of local public goods has incorporated heterogeneity (East-

erly and Levine, 1997; Alesina et al., 1999; Alesina and La Ferrara, 2000). Hagiu and Spulber (2013)

and Veiga et al. (2017) incorporate heterogeneity, pricing, and nonpricing strategies. Vertically dif-

ferentiated users purchase access to the platform, though composition plays no role within a given

side of the platform. In Hagiu and Spulber (2013), the platform developer invests in content, which

uniformly increases its value to all users and in Veiga et al. (2017), a monopoly platform developer

chooses the platform characteristics given the distribution of potential users.

The remainder of the paper is structured as follows. Section 2 develops the model. Section 3

presents the main results. Section 4 discusses the implications of the main results. Section 5 briefly

introduces some extensions to the model and Section 6 concludes.

2 The Model

This section develops a model of platforms competing in prices. Users are heterogeneous and

endowed with heterogeneous preferences over heterogeneity. The platforms are able to cultivate

this heterogeneity to their advantage, though such cultivation is costly.

10Marx and Schummer (2021), which has two prices (one for each side of the platform) finds that when prices are
independently drawn, prices are uniformly decreasing in the size of the platform and when correlated, the price of
one side increases while the other decreases.
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2.1 Preliminaries

There are two risk-neutral profit-maximizing platforms indexed by j = A,B and n utility-maximizing

users, indexed by i with large n. Each platform j produces a single network good (the platform

itself) at zero marginal cost. The platform sells access at price pj . For simplicity I assume users

do not multihome. Each user is endowed with a set of traits y = (y1, . . . , yT ) ∈ Y . Each yτ ∈ Yτ is

a trait. Hence, Y = Y1 × · · · × YT . There are Ȳ =
∏

τ |Yτ | collections of traits in the population

and Ŷ =
∑

τ |Yτ | total unique traits.

Example 1. Suppose that T = 3. Y1 = {20, 30, 40} is the set of ages, Y2 = {male, female, other}

is the set of genders and Y3 = {Christian, Jewish, Muslim, other} is the set of religions. There

are Ȳ = 3 × 3 × 4 = 36 types of users and Ŷ = 3 + 3 + 4 = 10 total traits. A 20 year old female

Christian represents one specific profile.

Many individuals behave identically. All else equal, a 31 year old and 32 year old may display

(nearly) identical preferences. To reduce the dimensionality of types, I bin similar sets of traits

together. I call these collections of traits types. Every user is defined by her T -dimensional type

zℓ ∈ Z for ℓ = 1, . . . , L, where L = |Z|. Hence, L ≤ Ȳ . If y, y′ ∈ zℓ for y ̸= y′ and some ℓ, then

L < Ȳ : Z partitions Y into L subsets. Without loss of generality, let nℓ = |zℓ > 0. The necessity

of distinguishing between traits, trait profiles, and types will become clear in Section 2.2.

Remark 1. Specifying the model by linking traits to types in this way provides a structured approach

to empirically model heterogeneity and composition. Empirical analyses can be conducted at the user

(or trait) level. In cases where L is unclear or unknown, unsupervised machine learning methods

such as k-means/modes or Gaussian mixture models can be used to partition the Ȳ profiles into L

bins.

Each type zℓ places a value on the presence of a type zm possessing each component trait of

y : xℓmyr ∈ {−1, 0, 1}, where 1 represents a desirable trait, 0 a neutral trait, and −1 an undesirable

trait.11 For example, a type may assign a 1 to all types with the same religion and a −1 to all

types with a different religion. These valuations create, for each trait ym an L×L directed graph.

These graphs are stacked to build an L× L× Ȳ tensor X that completely characterizes how each

type zℓ values the presence of each type zm that possesses trait y. As not all traits are equally

valued, each layer of the tensor is assigned a weight αyr . The weight signifies the importance of

11More general ranges can be used for the xℓmyr , e.g., xℓmyr ∈ R.
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the trait. For example, religion is likely more important than a type’s preferred number of pets, so

the α associated with religion will be larger than the α associated with pets. The tensor is then

collapsed into an L× L× 1 directed graph H with elements hℓm given by

hℓm =
∑

yr∈∪τYτ

αyrxℓmyr . (1)

If hℓm = 0, then a type zℓ user receives neither a premium nor a penalty from the presence of a

type zm user. Positive values convey premiums while negative values convey penalties.

Remark 2. If the data structure permits, a singular value decomposition can be applied, whereby

the data structure G is decomposed such that G = V ′ΣU , where the α are the elements of Σ.

Alternatively, when the hℓm are observed, the αyr can be estimated using hℓm =
∑

yr
αyrxℓmyr+εℓm.

To exploit variation within types, ℓ can be measured at the individual level. However, in many

applications the hℓm are unobserved latent values. While the hℓm may be unobserved, a binary

representation

h∗ℓm =

{
1 if hℓm > 0

0 if hℓm ≤ 0

is often observed. In online dating, whether or not a specific type chooses to match with another

is observed while the underlying latent weight hℓm is not. Using the discrete hℓm as the dependent

variable, the αyr] can be estimated using MCMC methods such as a Gibbs Sampler with data aug-

mentation. The latent hℓm are then pulled from the data augmentation step (Albert and Chib, 1993;

Vossmeyer, 2014).

Users hold inherent idiosyncratic preferences ζj ≫ 0 for each platform j. Following Cabral (2011),

I assume that ζj is sufficiently large to ensure market coverage. Hence, the relevant decision is the

relative preference for platform A: ξA = ζA − ζB, which is distributed according to the CDF Φ(ξ)

with PDF ϕ(ξ).

Assumption 1. (i) Φ(·) is continuously differentiable. (ii) ϕ(ξ) > 0 for all ξ. (iii) ϕ(ξ) = ϕ(−ξ).

(iv) Φ(ξ)/ϕ(ξ) is strictly increasing in ξ. (v) ϕ(ξ|z) = ϕ(ξ).

Items (i) and (ii) ensure that the demand curves are well behaved and that the platforms’ profit

functions are quasiconcave, while (iii) ensures that asymmetry occurs only through pricing and

market shares. Most continuous distributions satisfy (iv), which is standard in the literature.12

The last item assumes that the value of a platform itself is not conditional on the user’s type.

12Items (i)-(iv) mirror Assumption 1 of Cabral (2011, p. 88).
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2.2 Platform Behavior

The platforms each make two sequential choices: cultivation decisions followed by pricing decisions.

Cultivation is a costly coordination mechanism that operates by altering consumer expectations

prior to the pricing subgame. Through costly investment, platforms can target and attract traits,

influencing all types possessing those targeted traits. For example, by targeting Jewish singles, a

dating platform attracts Jewish males and females across a spectrum of ages and other traits.

The platforms simultaneously and independently set cultivation vectors cj = (cj1, . . . , cjŶ ) ∈ [0, 1]Ŷ ,

where cjyr corresponds to the investment made by platform j in cultivating trait yr. Let c = (cA, cB)

denote the collection of cultivation decisions.

Costs take the form κ(cj), which may consist of both monetary and nonmonetary components.

Assumption 2. (i)
∂κcj
∂cjyr

> 0 and
∂2κcj
∂c2jyr

> 0 for all yr and cjyr ∈ (0, 1). (ii)
∂2κcj

∂cjyr∂cjys
> 0 for

ys ̸= yr. (iii) limcjyr→1
∂κcj
∂cjyr

= ∞ for all yr.

Cultivation operates by influencing consumer expectations via coordination, which is denoted by

the superscript ‘e’. Prior to cultivation, the consumers’ (prior) expectations are given by qejℓ.

Consumers then receive a signal: the observed cultivation vector c. The expectations are augmented

by c, yielding post-cultivation expectations qejℓ(c). The expected installed base of platform j is then

qej (c) =
∑

ℓ q
e
jℓ(c). For tractability, I assume that expectations are updated linearly according to

qejℓ(c) = min

{
nℓ,max

{
0,

(
1 +

∑
yτ∈ℓ αyτ (cjyτ − c−jyτ )∑

yτ∈ℓ αyτ

)
qejℓ

}}
(2)

This piece-wise linear representation presents a simple, tractable formulation with which to work.

The results all hold for more general functions as well.

At c = 0, qejℓ(c) = qejℓ. This representation formalizes cultivation as a coordination mechanism.

Symmetry in cultivation is imposed across both platforms: efforts are equally effective. Cultivation

is also more effective for more important traits (those with a greater α). Denote by qe(c) the

collection of expectations.

Definition 1. Define a type zℓ’s expected valuation of the heterogeneity-weighted network effects

provided by platform j by

q̃ejℓ(c) =
L∑

m=1

qejm(c)hℓm. (3)
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Remark 3. While cultivation is at its core a location decision, there are substantial differences

between cultivation and the typical Hotelling-style location game. User locations are not primitive,

but instead depend on both the distribution of users in the population and their expectations. Sim-

ilarly, the ideal location choice of the platform depends on both, adding a feedback loop not present

in typical location models.

As in qe(c), denote by q̃e(c) the collection of expected heterogeneity-weighted market shares. After

observing the cultivation decisions, the platforms simultaneously and independently set their prices.

2.3 User Behavior

Every individual has unit demand and chooses one of the platforms. By purchasing access to

platform j, a type zℓ user with preferences ζj receives expected utility

ue(j, zℓ) = ζj + v
(
qej (c), θq̃

e
jℓ(c)

)
− pj , (4)

where v
(
qej (c), θq̃

e
jℓ(c)

)
is the value of the network effect of platform j to this individual and θ ≥ 0

is the marginal value of composition. If θ = 0, then composition is irrelevant. The relative

importance of composition to size is increasing in θ. The realized utility is given by the same

functional, substituting the realized values for the expected values.

2.4 Network Effects

The expected (and realized) value of the network associated with each platform depends on two

factors: the platform’s size and its heterogeneity-weighted network effect.

Assumption 3. (i) for all qej (c) > 0 and θ > 0,
∂v
(
qej (c),θq̃

e
jℓ(c)

)
∂q̃ejℓ

> 0. (ii) For all fixed q̃e(c),

∂v
(
qej (c),θq̃

e
jℓ(c)

)
∂qej (c)

> 0. (iii) For fixed qej (c) and qej (c)
′ ̸= qe

j(c), v
(
qej (c), θq̃

e
jℓ(c)

)
− v
(
qej (c)

′, θq̃ejℓ(c)
′)

is increasing in θ(q̃ejℓ(c)− q̃ejℓ(c)
′).

This assumption also carries over to the realized values.

3 Results

I utilize the subgame-perfect Nash equilibrium (SPE) solution concept. In the pricing stage, I find

that the well known coordination problem inducing multiple equilibria both persists and is worsened

given the additional dimensions to coordinate over. Those equilibria that, upon an increase in size
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yield a less desirable composition, may fail to satisfy the monotone comparative static property.

The set of prices obtainable in equilibrium is significantly wider when θ > 0 than when θ = 0.

In the cultivation stage, I illustrate endogenous product differentiation over the network externality.

The product differentiation acts as a form of equilibrium selection. Depending on the nature

of heterogeneity and the desirability of composition, cultivation can either soften or strengthen

competitive forces. Such competition can lead to higher prices and a less competitive market, lower

prices and a more competitive market, or a mixture with increased price dispersion. A platform

may opt for a smaller sized network if it corresponds to a more valuable composition, allowing its

competitor to grow large, but with a less valuable composition. Both platforms may benefit from

such as scenario.

3.1 Pricing Stage

Fix the cultivation profile at c. By (4) and market coverage, for all user expectations qe, L cutoff

values can be defined:

ζA − ζB = ξA︸ ︷︷ ︸
=ωℓ

=
[
pA − v

(
qeA(c), θq̃

e
Aℓ(c)

)]︸ ︷︷ ︸
expected hedonic price

of platform A

−
[
pB − v

(
qeB(c), θq̃

e
Bℓ(c)

)]︸ ︷︷ ︸
expected hedonic price

of platform B

,

with each cutoff corresponding to the type-zℓ user indifferent between platforms A and B.13 When

there is no confusion, I drop the cultivation profile c. Using these cutoff values, platform A’s

demand is

DA(pA, pB,q
e) = n−

L∑
ℓ=1

nℓΦ(ωℓ), (5)

and platform B’s demand is

DB(pB, pA,q
e). (6)

I omit the q̃e from the demand expressions, as the exogenous hℓm and the expectations qe are

sufficient in characterizing q̃e. Denote by p∗A = pA(q
e), p∗B = pB(q

e), and p(qe) = (p∗A, p
∗
B)

the prices in the equilibrium of the subgame induced by the cultivation profile c, where in each

equilibrium qe = q (expectations are fulfilled):

p∗A = argmax pADA(pA, p
∗
B,q

e)

p∗B = argmax pBDB(pB, p
∗
A,q

e).
(7)

13If there are no consumers of type zℓ in platform A’s installed base, then Φ(ωℓ) = 1.
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The results of the pricing stage can be interpreted as outcomes of a single-stage game in which

there is no cultivation, only composition effects.

Lemma 1. If p(qe) and p̂(qe) both satisfy (7), then p(qe) = p̂(qe).

The proof of this and all results are found in the Appendix. Lemma 1 does not imply that there is

a unique SPE; rather that there is a unique equilibrium of each subgame induced by a cultivation

profile c. Define

ω∗
ℓ =

[
pA − v

(
qeA(c), θq̃

e
Aℓ(c)

)]
−
[
pB − v

(
qeB(c), θq̃

e
Bℓ(c)

)]
as the cutoff value for a type zℓ user in the equilibrium of the subgame.

Lemma 2. For every set of expectations qe, there exists a representative user endowed with ξA =

ω0, defined as the individual whose demand corresponds to the representative demand: Φ(ω0) =

n−1
∑L

ℓ=1 nℓΦ(ωℓ).

This individual possesses traits that are a weighted representation of all individuals in the economy,

For convenience, I define this user’s expected heterogeneity-weighted network effect as q̃ej0 and type

as z0, which is interpreted as an L+ 1th type. Lemma 2 offers an alternative interpretation to the

pricing stage where there is only a single type z0 user on the market, with the remaining users

locked in. The static model is then analogous to the stage game of a single-mover overlapping

generations framework.

Definition 2. If q̃j0 > 0, then network j exhibits a heterogeneity premium [H+ (H-plus)]. If

q̃j0 < 0, then network j exhibits a heterogeneity penalty [H− (H-minus)]. If q̃j0 = 0, then network

j is heterogeneity neutral [H0 (H-naught)].

Remark 4. The complete comparative static of pricing with respect to the installed base is

∂pj(q
e)

∂qej︸ ︷︷ ︸
size effect

+
∂pj(q

e)

∂q̃ej0

∂q̃ej0
∂qej︸ ︷︷ ︸

composition effect

. (8)

This statement follows structurally from the theorem of the maximum. The traditional models of

platforms and network effects often only incorporate size effects (H0 networks) and can therefore

be interpreted as special cases of this model by either taking θ → 0 or assuming H = 0L×L.
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The models of local network effects, e.g., An and Kiefer (1995), Henkel and Bock (2013), and

the citations therein can also be derived as special cases by assuming that local (known) contacts

are given zero weight and nonlocal (unknown) contacts are given negative weight (H0 networks),

discounting the network effect. Remark 4 is formalized as follows.

Proposition 1. Under Lemma 2,

dpA(q
e)

dqeAℓ

=
1 +

ϕ′(ω∗
0)[1−2Φ(ω∗

0)]
ϕ(ω∗

0)
2

3 +
ϕ′(ω∗

0)[1−2Φ(ω∗
0)]

ϕ(ω∗
0)

2

∂v(qeA, θq̃eA0)

∂qeAℓ︸ ︷︷ ︸
size effect

+ θ
∂v(qeA, θq̃

e
A0)

∂q̃eA0

h0ℓ︸ ︷︷ ︸
composition effect

 (9)

dpB(q
e)

dqeAℓ

=

ϕ′(ω∗
0)Φ(ω∗

0)
ϕ(ω∗

0)
2 − 1

3 +
ϕ′(ω∗

0)[1−2Φ(ω∗
0)]

ϕ(ω∗
0)

2

[
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+ θ
∂v(qeA, θq̃

e
A0)

∂q̃eA0

h0ℓ

]
. (10)

Moreover, there exists a cutoff value θ∗(qe) such that for all expectations qeA ≤ qeB:

(i) qeA ≤ qeB but pA(q
e) > pB(q

e),

(ii) if θ > θ∗(qe) and h0ℓ < 0, then dpA(qe)
dqeAℓ

< 0.

Proposition 1 yields two noteworthy implications. First, the effect of a platform’s price with respect

to a change in the size of its own installed base [equation (9)] cannot be signed. The sign of the

effect depends on the type of user being added and the relationship between that user’s type and

those of the current installed base. Note that

1 +
ϕ′(ω∗

0)[1−2Φ(ω∗
0)]

ϕ(ω∗
0)

2

3 +
ϕ′(ω∗

0)[1−2Φ(ω∗
0)]

ϕ(ω∗
0)

2

> 0,

as is the size effect and the first term of the composition effect: θ
∂v(qeA,θq̃eA0)

∂q̃eA0
. The sign of h0ℓ is

either known or estimable (Remark 2), but varies across types. A positive relationship between a

platform’s price and the size of its installed base is guaranteed only if either θ = 0 or h0ℓ ≥ 0. If

θ > 0 and h0ℓ < 0, then the relationship can be nonmonotonic depending on the current state qe

and the magnitude of θ. The effect of a change in the installed base is an empirical question.

Second, when composition effects are present, the effect of a change in the size of a platform’s

installed base can have an indeterminate effect on a competing platform’s price. When composition

effects are absent, if one platform grows relative to another, then all else equal, the competing

platform must compensate by lowering its price. When composition effects are present, if a platform

13



increases its size, but that increased size comes at the cost of a poorer composition, then the relative

value of the unchanged competing platform increases. A platform can increase its size but worsen its

composition, which can induce a decrease in price while allowing a competing platform to increase

its price: price dispersion without asymmetric information, search, or other frictions.

A simple example illustrates the importance of composition effects.

Example 2. Suppose Φ ∼ U so the first term in (9) and (10) are 1
3 and −1

3 , respectively. Platform

A has Q users and there are three potential users to add, a type-1 user with h > 0, a type-2 user

with h = 0, and a type-3 use with h < 0. Each increases the number of users to Q + 1; however,

adding the type-1 user yields dpA
dq > 0 and dpB

dq < 0, adding the type-2 user yields dpA
dq > 0 and

dpB
dq < 0, and adding the type-3 user yields dpA

dq < 0 and dpB
dq > 0 if θ is sufficiently large.

The differentiability of ϕ(·) and v(qj , θq̃
e
j0) are not necessary for the patterns described in Proposi-

tion 1 to hold, but are necessary for analytically decomposing the size and composition effects.14

Moreover, (9) and (10) can be derived without invoking Lemma 2. Define

Φ̄ =
L∑

m=1

nm

n
Φ(ωm), ϕ̄ =

L∑
m=1

nm

n
ϕ(ωm), ϕ̄′ =

L∑
m=1

nm

n
ϕ′(ωm).

Then (9) and (10) are represented by the solution to(
−2− ϕ̄′(1−Φ̄)

ϕ̄2 1 + ϕ̄′(1−Φ̄)

ϕ̄2

1− ϕ̄′Φ̄
ϕ̄2 −2 + ϕ̄′Φ̄

ϕ̄2

)( dpA(qe)
dqeAℓ

dpB(qe)
dqeAℓ

)
=

 ∑
m

nm
n

[ϕ(ωm)ϕ̄+ϕ′(ωm)(1−Φ̄)]Ωm

ϕ̄2∑
m

nm
n

[ϕ(ωm)ϕ̄+ϕ′(ωm)Φ̄]Ωm

ϕ̄2

 ,

where

Ωm =
∂v(qeA, θq̃

e
Am)

∂qeAℓ

+ θ
∂v(qeA, θq̃

e
Am)

∂q̃eAm

hmℓ.

Ωm is analogous to the composition and size effects in Proposition 1, weighted and aggregated

across all types.

The size effect is only sufficient to explain variations in the prices of network goods when there

is either no (or a small) change in composition or no effect of composition. It cannot generate

a complete comparative static. While the size effect is uniformly positive, the composition effect

varies in both sign and magnitude, leading to the indeterminate total effect.15

14This statement is proven in the proof of Proposition 1.
15In dynamic settings, the size effect can be negative, as in Cabral (2011, p. 84) and Fudenberg and Tirole (2000).

Nevertheless, a positive composition effect would still imply indeterminacy in this case.
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Proposition 1 implicitly assumed that platform B’s installed base was unchanged (the addition of

a user to the market). It is also worthwhile to augment the analysis to understand the effect of

users switching platforms.

Proposition 2. Under Lemma 2 and assuming a transfer of users form platform B to A,

dpA(q
e)

dqeAℓ

=
1 +

ϕ′(ω∗
0 )[1−2Φ(ω∗

0 )]

ϕ(ω∗
0 )2

3 +
ϕ′(ω∗

0 )[1−2Φ(ω∗
0 )]

ϕ(ω∗
0 )2


(
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB , θq̃

e
B0)

∂qeBℓ

)
︸ ︷︷ ︸

size effect

+ θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB , θq̃

e
B0)

∂q̃eB0

)
h0ℓ︸ ︷︷ ︸

composition effect

 (11)

dpB(q
e)

dqeAℓ

=

ϕ′(ω∗
0 )Φ(ω∗

0 )

ϕ(ω∗
0 )2

− 1

3 +
ϕ′(ω∗

0 )[1−2Φ(ω∗
0 )]

ϕ(ω∗
0 )2

[(
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB , θq̃

e
B0)

∂qeBℓ

)
+ θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB , θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
. (12)

Moreover, there exists a cutoff value θ∗∗(qe) such that for all expectations qeA ≤ qeB:

(i) qeA ≤ qeB but pA(q
e) > pB(q

e),

(ii) if θ > θ∗∗(qe) and h0ℓ < 0, then dpA(qe)
dqeAℓ

< 0.

The relationship between θ∗ and θ∗∗ cannot be determined without placing further assumptions on

v.16 For a given θ, the size effect is compounded and places upward pressure on the platform’s own

price and downward pressure on the competing platform’s price. An increase in the size of platform

A’s installed base necessitates a decrease in the size of platform B’s installed base. The composition

effect is compounded as well under a transfer of users, though this compounding effect can place

either upward or downward pressure on price. When h0ℓ > 0, the composition effect compounds

the price effect, as platform A’s composition value increases while platform B’s decreases. When

h0ℓ < 0 the opposite occurs, putting downward pressure on the price.

The marginal value of composition θ bounds the composition effects. When θ is sufficiently small,

the network is approximately H0. In H0 networks, the size effect will always dominate the com-

position effect. The monotone-pricing relationship described in Katz and Shapiro (1985), Cabral

(2011), and those in Farrell and Klemperer (2007) and Shy (2011) can be expected to hold in net-

work industries such as software and telecommunications. Empirical evidence for monotone pricing

in software is found in Gandal (1994) and Brynjolfsson and Kemerer (1996). Yet in many other

network industries, such as internet dating and video games, composition effects are strong and can

exert significant force over the pricing.17 When θ is non-negligible, signing the effect of an increase

16The relationship between θ∗ and θ∗∗ is determined by the relative differences between the size and composition
effects in Propositions 1 and 2.

17For details on the empirical networks literature, see Birke (2009).
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in the size of the installed base requires knowledge of the type being added and how the various

types interact with one-another.

Proposition 3. The effects of H and θ on pricing are as follows.

(i) If network j is H+, then
dpj(q

e)
dθ > 0.

(ii) If network j is H−, then
dpj(q

e)
dθ < 0.

(iii) If network j is H0, then
dpj(q

e)
dθ = 0.

When θ increases, platforms have a greater incentive to positively affect composition in order to

cultivate an H+ network. If both platforms are able to cultivate an H+ network, then both

platforms benefit. Fro large enough θ, the composition effect exceeds the size effect and a small

increase (or decrease) in market share can lead to large swings, both positive and negative, in price.

These are H+ and H− networks. Such markets include online dating websites, social networks, and

video games. Shankar and Bayus (2003) provides empirical evidence in the video game industry. A

change in the size of a platform’s installed base need not correspond to a direct change in the price.

Nearly every change in market share is accompanied by a corresponding change in composition,

except for the rare case in which the proportions of all types remain unchanged. In any case in

which the distribution is affected, either compounding or countering composition effects interact

with size effects. As a result, (8) is the appropriate measure to use when considering price changes

resulting from changes in installed base.

An increase in installed base, when coupled with an increase in the relative heterogeneity premium

(or decrease in the heterogeneity penalty), implies compounding effects and monotone price changes.

An increase in market share, when coupled with a decrease in the relative heterogeneity premium

(or increase in the heterogeneity penalty), implies countering effects, which can lead to lower prices

for larger networks.

Let πj(p(q
e)) denote platform j’s profits in the equilibrium of the subgame induced by c.

Corollary 1. For all expectations qeA ≤ qeB with q̃eA0 > q̃eB0, there exists a cutoff value θ̄(qe) such

that πA(pA(q
e)) > πB(pB(q

e)) if and only if θ > θ̄(qe).

Corollary 1 is a direct result of Propositions 1–3. Composition effects can become important enough
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that the smaller platform with a better composition can set a higher price than a larger competitor.

This price differential can be so severe that the smaller platform is also more profitable than its

larger competitor.

Proposition 4. Under Lemma 2 and assuming a transfer of users from platform B to A,

dπA(p(q
e))

dqeAℓ

= npA(q
e)ϕ(ω∗

0)

[(
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB , θq̃

e
B0)

∂qeBℓ

)
+ θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB , θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
(13)

dπB(p(q
e))

dqeAℓ

= −npB(q
e)ϕ(ω∗

0)

[(
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB , θq̃

e
B0)

∂qeBℓ

)
+ θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB , θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
. (14)

Therefore, sign
{

dπA(p(qe))
dqeAℓ

}
̸= sign

{
dπB(p(qe))

dqeAℓ

}
.

If instead of a transfer from platform B to A, platform B’s installed base remains unchanged, then

∂v(qeB ,θq̃eB0)
∂qeBℓ

=
∂v(qeB ,θq̃eBℓ)

∂qeB0
= 0. Like Propositions 1 and 2, the signs of (13) and (14) depend on θ and

h0ℓ. The nonmonotonicities in prices carry over to profits. If a platform adds users that do not

mesh well with the existing base, the platform becomes less valuable to its existing users and thus

less profitable as it grows. Equation (13) illustrates the potential for a niche construction strategy:

by purging users that are not a good fit, the platform can shrink its size but increase its value to

existing users, increasing profits.18 There is no reliance on a vertical measure of differentiation like

income, but rather a horizontal measure. Small H+ networks with highly favorable compositions

can be significantly more valuable to consumers than large H0 or H− networks, allowing for niche,

boutique, and exclusive platforms to both survive and thrive.

Proposition 5. The elasticity of demand for platform j is decreasing in both q̃ej and q̃ej − q̃e−j.

When delineating the market by type and increasing the value of composition for a given θ, con-

sumers’ responsiveness to prices diminishes, implying a less elastic demand (the composition creates

a quasi lock-in effect).

Competition for composition opens up an avenue for product differentiation over the network

externality. This avenue is the primary mode of competition observed in online dating markets

as features become standardized across platforms.19 Dating platforms such as ChristianMingle,

JDate, Farmers Only, Raya, and The League each target a distinct trait over which to differentiate,

18Niche construction has been employed by identity-based organizations (who similarly provide platforms for
members of the associated identity group) as a mechanism for radicalization (Carvalho and Sacks, 2024).

19Most dating platforms employ similar algorithms built upon a singular value decomposition (Klemens, 2006, p.
61).
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creating natural market segmentation. Given that these platforms no longer directly compete

with one-another, the platforms have greater flexibility in pricing. In practice, competition for the

market often emerges within each segment, as multiple politics-based, religious-based, and other

platforms have emerged.

3.2 Cultivation Stage

To isolate the effects of cultivation, I make the following assumption regarding expectations.

Assumption 4. For each type zℓ, q
e
Aℓ ∼ U(0, nℓ). Let Qe denote the random variable.20

Each draw is stochastic with a symmetric average. Without cultivation, each platform has an

expected n/2 users, with the types split evenly across platforms.

Remark 5. The comparative static of pricing with respect to composition is
∂pj(q

e(c))

∂q̃ej0(c)︸ ︷︷ ︸
direct composition

effect

+
∂pj(q

e(c))

∂qejℓ(c)

∂qejℓ(c)

∂q̃ej0(c)︸ ︷︷ ︸
indirect composition

effect


∂q̃ejℓ(c)

∂cjyr
. (15)

This decomposition is analogous to the pricing stage. It uncouples the direct effect of cultivation

on prices through composition and the indirect effect of cultivation on prices through size.

Given pA(q
e(c)) and pB(q

e(c)), the platforms’ objectives are

max
cA

{pA(qe(c))[1− Φ(ω∗
0)]− κ(cA)}

max
cB

{pB(qe(c))Φ(ω∗
0)− κ(cB)} ,

(16)

with ω∗
0 evaluated at p(qe(c)). The arbitrary first-order condition (FOC) with respect to cultivating

trait yr by platform A is given by

pA(q
e(c∗))ϕ(ω∗

0)
∑

ℓ: yτ∈ℓ

[
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB, θq̃

e
B0)

∂qeBℓ

+θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB, θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
f(α) =

∂κ(c∗A)

∂cAyr

,

where

f(α) =


αyτ∑

ys∈ℓ αys
if qeAℓ(c

∗) =
(
1 +

∑
ys∈ℓ αys (cjys−c−jys )∑

ys
αys

)
qejℓ

0 otherwise.

20Any truncated marginal distribution centered about nℓ/2 is sufficient. I employ the uniform distribution for
simplicity.

18



Although not the true comparative static, the two effects are visible, augmented by the change in

cultivation f(α).

Lemma 3. There exists at least one SPE.

While existence is guaranteed, uniqueness is not. The SPE cannot be completely characterized

without further restrictions on qe, H, and θ; however, analyzing the above FOC still provides

insights.

Proposition 6. In all SPE (c∗, p(qe(c)) and for all H and qe:

(i) There exists a θ(qe) such that c∗A, c
∗
B ̸= 0 whenever θ ≤ θ(qe).

(ii) c∗jyr > 0 if and only if

∑
ℓ: yτ∈ℓ

[
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB, θq̃

e
B0)

∂qeBℓ

+ θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB, θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
f(α) > 0.

(iii) Suppose that {ℓ : yr ∈ ℓ} = {ℓ : ys ∈ ℓ} and c∗jyr , c
∗
jys

> 0 for some traits yr, ys. Then,

cjyr > (=) cjys if and only if αyr > (=)αys.

When θ is small, the rewards to efforts aimed at increasing the size of the installed base are

significantly more than efforts aimed at increasing the composition efforts. As both platforms are

able to employ strategic cultivation, a prisoner’s dilemma emerges, much like the typical advertising

game. The platforms’ efforts counteract one-another, implying the existence of a profile c′ in which

the platforms cultivate to a lesser degree, yielding the same distribution: qe(c′) = qe(c∗), but with

each platform receiving greater profits.

Trait y is cultivated whenever the total marginal effect of cultivating that trait is positive. The total

effect, given in statement (ii) of Proposition 6, considers every type ℓ in which trait y is present.

The size effect is positive for each ℓ, though the composition effect can take any sign. Summing

the net effect across all ℓ affected by y gives the total marginal effect, which when positive implies

that trait y is revenue increasing. When negative, it is revenue decreasing and when zero, revenue

neutral. In the latter two cases, not cultivating trait y is a best response.
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For any θ > 0, those traits with the greater α carry the most weight through f(α), which is

nondecreasing in that α. If there are two traits that affect the same set of types, then the more

dominant trait, defined by the larger α, is cultivated more intensely.

Definition 3. Trait yr (weakly) dominates ys if αyr > (≥)αys. Trait yr is (weakly) dominant if

αyr > (≥) maxys ̸=yr αys.

Dominance is unclear across two traits that affect non-identical sets of types, even if those sets have

a nonempty intersection.

Regardless of the size effect, specific traits may be cultivated so long as they are revenue increas-

ing. Thus, cultivation always occurs when the size effect is dominant, as any increase in the size

of the installed base is valuable. This outcome of Proposition 6 resembles the traditional liter-

ature, although the strategy pursued is distinct. While useful, it is more interesting to consider

investments increasing the installed base when not all increases are treated equally. Some increases

can even harm the platform. Unfortunately, precise characterizations of the SPE are unavailable

without further restrictions on H. For the remainder of this section, suppose that θ is sufficiently

large so that the composition effect dominates the size effect. In what follows, I consider several

specifications of H that resemble real-world occurrences, such as in-group bias, out-group bias, and

grouping.

Various restrictions will be placed on the hℓm.

3.2.1 In-Group Bias

In-group bias occurs whenever an individual prefers an own-type to an other-type. This broad

definition implies that hℓℓ > hℓm > 0 for ℓ ̸= m constitutes in-group bias. I use a more restrictive

definition where other-types impose a negative externality, rather than a smaller positive externality

to eliminate uninteresting cases.

Definition 4. In-group bias exists if hℓℓ > 0 for each ℓ and hℓm < 0 for all m ̸= ℓ. The in-group

bias is weak if
∑

m ̸=ℓ |hℓm| > hℓℓ for all ℓ. The in-group bias is strong if
∑

m ̸=ℓ |hℓm < hℓℓ for all ℓ.

The strength of in-group bias is defined by the diagonal-dominance ofH. IfH is diagonal dominant,

then the bias is strong and if H is diagonal nondominant, then it is weak. Strong bias implies

that the presence of a single own-type outweighs the presence of one of each of the other L − 1

other types for every type. Weak bias implies the opposite. If the in-group bias is strong, then
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∑
m ̸=0 |h0m| > h00. An analogous relationship holds for weak in-group bias.

Proposition 7. Suppose that qe = EQe and that θ is sufficiently large. If, for some nonnegative

ε,
∑

m ̸=ℓ |hℓm| − hℓℓ > ε, then there is a unique SPE in which c∗ = 0. If
∑

m̸=ℓ |hℓm| − hℓℓ < −ε,

then in every SPE,

(i) c∗ ̸= 0,

(ii) c∗jyr > 0 for at least one j and all yr.

If
∂2v(qej (c),θq̃

e
jℓ)

∂qe2jℓ
= 0, then ε = 0. If

∂2v(qej (c),θq̃
e
jℓ)

∂qe2jℓ
> 0, then ε > 0 and ε is increasing in the steepness of

∂v(qej (c),θq̃
e
jℓ)

∂qejℓ
. If

∂2v(qej (c),θq̃
e
jℓ)

∂qe2jℓ
< 0, then weak in-group bias is not necessary for Proposition 7, though

it is sufficient. When the in-group bias is sufficiently strong, the additional positive externality

of increasing the presence of in-group members outweighs the negative externality induced on

existing out-group members, As a result, there is always the incentive to cultivate at least one

trait. Moreover, increasing the presence of each type of user is also value-enhancing, so all traits

are cultivated, though not necessarily by the same platform. When the in-group bias is sufficiently

weak, the additional negative externality outweighs any positive externality generated by size effects

and positive externalities from a larger in-group. In this environment, the ideal is a wholly in-group

composition, though this is only obtainable under a small subset of conditions on qe. Under the

assumption qe = EQe, q̃ejℓ =
n
2L

∑L
m=1 hℓm. From the perspective of each zℓ user, the platform is

H+ if the in-group bias is weak, H− if it is strong, and H0 if it is balanced.

Under asymmetric expectations, a wide variety of outcomes are possible. When the distribution of

a specific type across platforms is significantly unbalanced and H exhibits weak in-group bias, an

SPE without cultivation may no longer exist. The platform with the large share of type zℓ users

seeks to increase their presence. Although the in-group bias is weak, the number of individuals

benefiting from the increase of the in-group outweighs the negative externality imposed on those

individuals who suffer from the presence of an out-group member. Whether or not the SPE is

effected depends on how weak the in-group bias is, i.e., the magnitude of
∑

m̸=ℓ |hℓm| − hℓℓ.

Proposition 8. Suppose θ is sufficiently large. For every asymmetric qe, there exists a positive ε′

such that an SPE without cultivation exists if and only if
∑

m̸=ℓ |hℓm| − hℓℓ > ε′.
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When
∑

m ̸=ℓ |hℓm| − hℓℓ > ε′, the aggregate negative externality outweighs the aggregate positive

externality.

3.2.2 Out-Group Bias

Like in-group bias, I use a stronger than necessary definition of out-group bias: hℓ < 0 for each ℓ

and hℓm > 0 for every m ̸= ℓ.

Definition 5. The out-group bias is weak if
∑

m ̸=ℓ hℓm > |hℓℓ| for all ℓ. The out-group bias is

strong if
∑

m ̸=ℓ hℓm < |hℓℓ| for all ℓ.

When out-group bias is present, a tension between types emerges. Suppose that there are two

types of users, a minority type and a majority type. The minority is satisfied due to the presence

of a large out group, while the majority is analogously dissatisfied. Which party;s concerns are

more important to the platform, vis-à-vis profits, depends on the strength of the bias. If a type

dominates others according to the magnitude of hℓℓ, then its satisfaction is weighted heavier. Under

strong out-group bias, the goal is to shrink the presence of the most dominant types, saturating

the platform with the various out-groups. Because this minority has the most intense preferences

for the out-group, their satisfaction outweighs the dissatisfaction of the remaining types. Since the

platform is not a monopoly, its competitor has a similar strategy in mind.

Proposition 9. Suppose that |theta is sufficiently large, |h11| > |h22| > · · · > |hLL|, and hmℓ = h′

for all m ̸= ℓ and some value h′ > 0. If the out-group bias is sufficiently strong, then platform j’s

profits are maximized when, for a given qe, qj1 < qj2 < · · · < qjL.

In the SPE, too much cultivation occurs, again resembling a prisoner’s dilemma. Suppose that

qejℓ ≈ nℓ
2 for each ℓ. If a platform does not cultivate, then its competitor has the incentive to

cultivate, targeting hLL the heaviest, moving downward sequentially, turning the most dominant

types into minorities on the platform. Thus, there is no SPE without cultivation. The above profile

cannot be part of an SPE either. The non-cultivating platform can increase its value by targeting

the same group, increasing their numbers, which increases value to the more dominant types by

decreasing their relative share in the installed base. In the end qe ≈ qe(c∗) with c∗ = 0: a prisoner’s

dilemma. An analogous argument holds with an asymmetric c∗ when the initial distribution is

asymmetric.
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3.2.3 Grouping

Grouping is a generalized form of in-group bias. Akin to in-group bias, hℓℓ ≥ 0 for each ℓ. Partition

the types into K sets, L1, L2, . . . , LK . For each k = 1, . . . ,K, all ℓ,m ∈ Lk and all m′ /∈ Lk,

hℓm > 0 and hℓm′ < 0. H takes on a block-diagonal shape

H =



+ + − − − −
+ + − − − −
− − + + − −
− − + + − −
− − − − + +
− − − − + +

 .

Unlike in-group bias, the diagonals hℓℓ need not be positive. The positive and negative values can

each have varying weights (hℓm need not be equal). Such patterns are often found in online dating

markets, where strong preferences over race, religion, education, and other traits are held.

The platform’s ideal composition depends on θ. For larger θ, each platform will target specific

positive groupings, hoping that its competitor will target the alternative group. When K = 2, the

platforms will cultivate traits corresponding to members of a group as best as possible (as there

may be overlaps when Ȳ > L). If the two groups are somewhat even in size and value, then there

is no tension. An SPE emerges in which each platform targets a different group. Which group is

targeted by each platform depends on the initial state qe. If there is a large disparity between the

size or value of each group, again a prisoner’s dilemma emerges and the platforms compete for the

same group.

Definition 6. A group k is dominant if

(i) min{hmℓ : m, ℓ ∈ Lk} −maxk′ ̸=k max{hmℓ : m, ℓ ∈ Lk′} ≫ 0,

(ii) |max{hmℓ : m ∈ Lk, ℓ /∈ Lk}| − |mink′ ̸=k min{hmℓ : m ∈ Lk′ , ℓ ∈ Lk}| ≫ 0.

Two groups are similar if, for groups k and k′,

(iii) |hmℓ| − |hm′ℓ′ | ≈ 0 for all m, ℓ ∈ Lk and m′, ℓ′ ∈ Lk′,

(iv) |hmℓ′ | − |hm′ℓ| ≈ 0 for all m, ℓ ∈ Lk and m′, ℓ′ ∈ Lk′.

Statement (i) states that the type with the lowest within-group valuation in group k is sufficiently

larger than the type with the highest within-group valuation in all other groups. Statement (ii)

states that the type most tolerant of the out-group is significantly less tolerant than the least

tolerant type in all of the out-groups. Statements (iii) and (iv) are straightforward.
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Proposition 10. Suppose that K = 2, Ȳ = L, qe = EQe, and θ is sufficiently large.

(i) If the two groups are similar, then there exists a unique SPE in which

(a) c∗jyr > 0 if and only if c∗−jyr
= 0,

(b) c∗jyr > 0 for at least one j and all yr,

(c) If c∗jyr > 0 and c∗jys > 0 for all yr ̸= ys, then hyrys > 0.

(ii) If group 1 is dominant, then there exists a SPE in which

(a) c∗jyr = c∗−jyr
for all yr,

(b) c∗jyr > 0 for all j and yr ∈ L1,

(c) c∗jys > 0 for all j and all ys such that hyrys > 0 for all yr ∈ L1,

(d) cjyt = 0 for all j and all yt such that hyryt < 0 for all yr ∈ L1.

Case (i) formalizes an equilibrium with delineation of the market by group. Each platform cultivates

a different group and profits are strictly greater than under a zero-cultivation profile. Case (ii)

formalizes the prisoner’s dilemma.

When K > 2, the delineation of the user base by type is less precise. Without relaxing assumptions

on ζA and ζB eliminating market coverage, cultivation is not as effective.21 Each platform is forced

to have both in- and out-groups.

So far, cultivation alters expectations by increasing the presence of types possessing cultivated

traits. Often, other traits and types are affected. I refer to these effects as enhancing or refining.

3.2.4 Enhancing and Refining Effects

Cultivation often has a refining effect: targeting one set of traits negatively affects individuals with

with related traits, pushing them away from the platform. For example. cultivating a specific age,

education, religion, or political affiliation in online dating. If a dating platform announces itself as

a platform for political conservatives to find other political conservatives, both conservatives and

liberals will adjust their expectations accordingly. Not expecting to find a match, liberal singles

21Without market coverage, platforms will price and cultivate such that only one group joins each platform under
case (i).. Under case (ii), both of the platforms will cultivate and split the dominant group.
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adjust their expectations downward. When traits are complementary, targeting one set of traits

can enhance cultivation, attracting those with the complementary traits.

Incorporating enhancing and refining effects to cultivation increases its efficacy. In the case of

refinement, the size of the non-cultivated installed base shrinks, but this shrinkage increases the

value of the composition effect. For large θ, this shrinkage is a net positive for the platform. A

platform targeting a small coalition with strong in-group bias benefits from refinement. It shrinks its

installed base so that in the limit only members of the coalition join the platform. This coalition

is not valuable in the “vertical” sense; that is, they do not possess a higher income level or a

higher willingness to pay for the platform in general. Rather, the value arises horizontally through

homogeneity. The platform’s exclusivity is driving its value. It is not exclusive in the typical sense

of niche or luxury goods, but exclusive to a specific group with preferences to remain isolated—were

that group to increase in size, the platform and users would attract them and all benefit. In this

context, cultivation acts as a public good where each platform prefers the other to cultivate and

through refinement, receive a share of the benefits. In equilibrium, one platform acquiesces and

cultivates.

The market resembles the dominant firm-fringe firm paradigm; however, the fringe platform is not

“fringe” in the typical sense. Rather, the fringe (cultivating) platform is strategically small by

its own doing and the non-cultivating platform’s “dominant” position (in terms of market share)

is only so as the rational response to its cultivating counterpart. It is driven not by the larger

platform, but by the smaller platform. Both platforms may be more profitable than they would be

if they split the market evenly. The cultivating platform has fewer but more valuable (in terms of

network externalities) adopters while the larger platform is compensated by the increasing returns

generated by more users.

A dating platform such as JDate faces such a trade-off. Jewish individuals make up approximately

2.4% of the adult population in the United States (Pew Research Center, 2021). Proposition

10(i) shows how it can be highly profitable to considate the network and leveerage composition

effects into prices that match its much larger competitors. JDate, as of May 2025, charges a single

month price of $59.99 (Kottemann, 2025) while Match.com’s base price is $31.99 for a single month

(WeGoDating, 2025). JDate has only a fraction of the installed base of Match—2 million (Belz,

2024) compared to 5.5 million (Curry, 2025).
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4 Composition: Collusion and Competition

The model and analysis of Sections 2 and 3 are also useful in understanding environments outside

of the direct scope of the model. I emphasize two such environments. First, identifying collusion

via price fixing can be difficult when the goods in question possess network externalities. This

issue is exacerbated by preferences over composition. Ignoring composition effects leads to false

positives by attributing higher than expected (or lower than expected) prices to factors outside of

market competition. Second, it is difficult to explain a multiproduct firm in a network industry

when the products are similar. Without regards to composition, segmenting users into multi-

ple platforms cannibalizes demand. By incorporating composition effects, such separation can be

demand-enhancing rather than cannibalizing. The following subsections formally illustrate each of

these ideas.

4.1 Identifying Collusion

If composition is ignored and consumers are cultivated so that size remains constant but the compo-

sition is improved, then equilibrium prices will appear to be higher than what comeptition supports.

In reality, prices are still the result of non-cooperative strategic interactions. To formally illustrate

this point, suppose that (i) Ȳ = L, (ii) nℓ =
n
L , (iii) q

e
jℓ =

nℓ
2 for each ℓ and j, and (iv) θ ≫ 0. For

simplicity, I also assume that |hℓm| = h∗ > 0 is for all ℓ,m. H takes on the block diagonal shape

H =

(
h∗ −h∗

−h∗ h∗

)
, where h∗ =

 h∗ · · · h∗

...
. . .

...
h∗ · · · h∗

 .

By Proposition 10, an SPE exists in which all types are cultivated but no two types are cultivated

by the same platform. In this equilibrium, the platforms split the market evenly. By the symmetry

assumptions of the user base, p∗A = p∗B. Setting θ = 0 and c = 0 replicates a model without

composition effects with prices p′A = p′B < p∗A = p∗B. Thus, if prices p∗A and p∗B are observed but

a model without composition effects predicts that competition would yield prices p′A and p′B, then

the platforms could face unwarranted scrutiny for collusive behavior when prices do in fact reflect

the noncooperative environment.

Interestingly, prices can also be lower than what would be predicted by a model without composition

effects. If the platforms are H−, then each platform sets a lower price than if they were H0 or

H+. Combining these lower than expected prices with high startup or fixed costs may lead to false

positives in the other direction. Estimating prices without accounting for composition effects, but
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observing prices that correspond to the SPE leads to predicting predatory pricing when no such

pricing is occurring.

4.2 Singular Ownership of Multiple Platforms

Match Group Inc. operates not only its Match website, but other platforms such as Democratic

People Meet, Republican People Meet, The League, Hinge, and Tinder. A single entity owning and

operating multiple platforms is not unique to the online dating industry, for example PayPal and

Venmo are owned by PayPal Holdings. Nonetheless, these examples illustrate the importance of

accounting for composition effects when considering network goods.

Composition effects and strong preferences over types can readily explain why users may prefer

multiple independent platforms over a single unified platform. By segregating users by type, each

smaller platform becomes increasingly valuable to its base. The gains from the increased positive

composition effect outweighs the loss from the decreased size effect. These exclusive platforms

are than priced higher than the original larger platform, strictly increasing profits (assuming the

additional costs of operating multiple platforms are not too large).

With slight changes to the model, these points can be formally illustrated.

4.2.1 Formal Analysis

Instead of two platforms competing, suppose that there is a single owner that operates up to

J ≥ 1 platforms. Also suppose that ξA is constant across all users, i.e., ϕ(ξA) is a single point

mass. This simplifies the analysis so that when operating a single platform, profit maximization

entails capturing all n users when there are no composition effects. Cultivation is still a potentially

profitable strategy, though any SPE from Section 3 in which a prisoner’s dilemma emerges is

immediately eliminated with a multiproduct monopolist. Th rest of the model is as described in

Section 2.

Proposition 11. For θ sufficiently small, the owner maximizes profits by operating a single plat-

form.

Suppose θ = 0. In this case, dividing a single large platform into smaller, independent platforms

lowers v(n, 0) to v(q, 0) < v(n, 0) for every q < n and all users. When there is a single platform,

the profit maximizing price is given by p∗ = ξA + v(n, 0), with profits np∗. For multiple platforms,
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each platform j has a price of pj = ξA + v(qj , 0) < pj and profits qjpj . Since
∑

qj
= n and each

pj < p∗,
∑

j qjpj < np∗.

As θ grows larger, a more profitable opportunity arises when consumers hold specific preferences

over composition.

Proposition 12. For θ sufficiently large and either in-group bias, out-group bias, or grouping, the

owner maximizes profits by operating at least two platforms.

More generally, any H that exhibits in-group bias, out-group bias, or grouping on a subset of H

satisfies the proposition.

Proposition 12 can also explain why search filters, like those on dating platforms, do not represent

a perfect substitute to operating multiple platforms. These search algorithms decrease the cost of

matching (increasing the value of the network effect); however, the valuation of the platform also

depends on the presence of individuals for which there may not be a direct interaction.

Example 3. A man in his early 30s with children faces competition in the dating market from other

men, both of the same and different types (e.g., a man in his early 30s without children. Similarly,

women face competition from women of the same and different types.

These search algorithms cannot prevent an individual’s desired type from interacting with the

“competition.” Separation of the platforms does mitigate this issue. This idea extends well beyond

dating markets to platforms broadly.

5 Multi-Sided Platforms and Dynamic Considerations

Many of the results of Section 3 can be applied to more dynamic settings as well as to multi-sided

platforms (e.g., advertisers and end-users on a social network). In what follows, I provide some

intuition on some of these extensions with a focus on how composition and cultivate affect these

environments. A complete formal analysis is left for future work.

5.1 Multi-Sided Platforms

Many modern platforms are multi-sided. End users do not pay for the service. They act as loss

leaders while advertisers pay to reach users through the platform. It merits questioning if advertisers
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prefer, as defined by willingness to pay for access, a smaller platform.22 Naturally, advertisers of

niche, status, or luxury goods would to prevent over-saturation; however, these goods are often

endowed with negative network externalities (such as the snob effect). Interestingly, an argument

exists for advertisers selling more typical goods to prefer smaller platforms with a more appropriate

composition.

Suppose a product targets a specific demographic. There are two platforms: one with 10,000 users,

all of whom are members of the target demographic and one with 50,000 users, 5,000 of whom are

from the target demographic. In this case, the advertiser is willing to pay more for the smaller

platform. Yet, if the second platform is augmented so that there are still 50,000 in total users, with

11,000 from the target demographic, then the advertiser may still be willing to pay more for the

smaller platform. While seemingly counter-intuitive, composition effects and the above analysis

provides evidence to support this claim.

On the larger platform, advertisers compete for user attention with other advertisers. This com-

petition includes advertisers targeting the specified demographic, advertisers targeting other de-

mographics, and those targeting the general population. As a result, the likelihood of reaching

the desired users is decreased, particularly by those advertisers targeting the general population.23

Given a lower expected effectiveness, a lower willingness to pay follows.

In the context of social networks, advertisers face a similar issue, even without the presence of

other advertisers. There is competition for views from other users. On larger platforms with many

posts, the advertisements become buried and suffer from similar clutter effects as described in Ha

and McCann (2008). Again, the result is a higher willingness to pay for the smaller platform with

the greater likelihood of reaching the demographic of interest.

5.2 Dynamic Composition Effects

Section 3 illustrated how prices and profits are affected by composition effects and the valuation

of composition θ. Platforms are also able to leverage composition through cultivation to increase

prices and profits. As θ increases, so too do the benefits of cultivation. This relationship introduces

a potential dynamically profitable opportunity for platforms: influencing the value of composi-

tion. If a platform can both cultivate a valuable installed base and increase how consumers value

composition via θ, then over time, both prices and profits rise.

22See Chandra and Collard-Wexler (2009) for a study of advertiser behavior under mergers.
23Evidence in support of this claim is found in Cho and Cheon (2004) and Ha and McCann (2008).
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Strategies similar to influencing θ have been utilized by identity groups, such as religious organi-

zations. Carvalho and Sacks (2024) studies the dynamics of endogenous discrimination and niche

construction, where leaders of identity groups leverage the environment to increase payoffs. Plat-

forms beyond the context of identity-based organizations can employ similar strategies. Early

investments in cultivation and increasing θ can yield significant long run dividends. Moreover, if

cultivation efforts need only be temporary (e.g., via lock-in), then the long run returns are even

greater.

If θ can be increased by platform activities, then it is similarly plausible that a lack of investment

can lead θ to decay. As θ shrinks, composition becomes less important and platforms will invest

less in cultivating composition. In the long run, the dynamics converge to those in Cabral (2011).

6 Concluding Remarks

Prior to this paper, composition effects have been largely absent from the study of network goods

and platforms, and relatively absent from the general literature on market externalities.24 I have

shown that many of the equilibrium and comparative static properties of price competition in the

presence of network externalities need not hold when incorporating heterogeneous preferences over

heterogeneity.

In particular, a platform’s price is no longer necessarily monotonic in its market share, which

implies that a platform’s market share is no longer a sufficient statistic for its success. The proper

comparative static must incorporate the direct size effects and the indirect composition effects.

The model analytically decomposes the comparative static to isolate these effects. The importance

of composition effects opens up a new area of study within the realm of imperfect competition:

the cultivation of heterogeneity and product differentiation over the externality. I have sown that

platforms can use cultivation to coordinate expectations and endogenously influence the valuations

in both the population of the platform’s adopters and the population at large. The effects of

cultivation can be similarly studied by decomposing the pricing effects into a direct effect though

composition and an indirect effect through the installed base. Although I linked many of the

24Again, exceptions include the study of local public goods and some work on club goods. In the provision of
local public goods, heterogeneity among consumers, when couple with preferences over heterogeneity, has substantial
impacts. Individuals’ willingness to provide local public goods through taxation decreases as the degree of ethnic
fragmentation in the local population increases (Easterly and Levine, 1997; Alesina et al., 1999; Alesina and La
Ferrara, 2000). This finding indicates that individual attachment to goods with consumption externalities is directly
affected by the composition of its users.
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assumptions and results to dating platforms, the results are more general and can be applied to

many networks found in the new economy.

Appendix

Proof of Lemma 1.

Proof. For a given cultivation profile c, the platform’s objective functions are

max
pA

pA

[
n−

L∑
ℓ=1

nℓΦ(ωℓ)

]

max
pB

pB

L∑
ℓ=1

nℓΦ(ωℓ).

The corresponding first-order conditions (FOC) are

pA =
n−

∑L
ℓ=1 nℓΦ(ωℓ)∑L

ℓ=1 nℓϕ(ωℓ)
(17)

pB =

∑L
ℓ=1 nℓΦ(ωℓ)∑L
ℓ=1 nℓϕ(ωℓ)

. (18)

Multiplying the right-hand side by n−1/n−1 yields

pA =
1−

∑L
ℓ=1

nℓ
n Φ(ωℓ)∑L

ℓ=1
nℓ
n ϕ(ωℓ)

pB =

∑L
ℓ=1

nℓ
n Φ(ωℓ)∑L

ℓ=1
nℓ
n ϕ(ωℓ)

.

Invoking Lemma 2, I substitute for the representative consumer:

pA =
1− Φ(ω0)

ϕ(ω0)
(19)

pB =
Φ(ω0)

ϕ(ω0)
. (20)

Subtracting (20) from (19) yields

pA − pB =
1− 2Φ(ω0)

ϕ(ω0)
. (21)

By Assumption 1(iv), the right-hand side of (21) is bounded and strictly decreasing in pA while

the left-hand side is unbounded and strictly increasing in pA. Hence, for any qe, there is a unique

pA − pB satisfying (21). Given pA − pB, (19) and (20), a unique pA and pB can be backed out for

each qe.
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Proof of Lemma 2.

Proof. The existence of a representative individual with cutoff ω0 follows from two points. First,

Φ(ωℓ) ≤ 1 for all ℓ and
∑L

ℓ=1 nℓ = n, which implies that

L∑
ℓ=1

nℓΦ(ωℓ) ≤ n =⇒
L∑

ℓ=1

nℓ

n
Φ(ωℓ) ≤ 1.

Second, bu the continuity of Φ(·), for every
∑L

ℓ=1
nℓ
n Φ(ωℓ) = Ω ∈ [0, 1], there must exist a value ω0

such that

Ω =

L∑
ℓ=1

nℓ

n
Φ(ωℓ) = Φ(ω0),

completing the proof.

Proofs of Propositions 1 and 2.

Proof. I jointly prove Propositions 1 and 2. From (19) and (20),

0 = −pA(q
e) +

1− Φ(ω∗
0)

ϕ(ω∗
0)

0 = −pB(q
e) +

Φ(ω∗
0)

ϕ(ω∗
0)

.

Totally differentiating each (and setting those differentials not of interest to zero) yields

0 = −dpA(q
e)− 1

ϕ(ω∗
0)

2

(
ϕ(ω∗

0)
2 + ϕ′(ω∗

0)[1− Φ(ω∗
0)]
) [

dpA(q
e)− dpB(q

e)−
(
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+θ
∂v(qeA, θq̃

e
A0)

∂q̃eA0

∂q̃eA0

∂qeAℓ

)
dqeAℓ +

(
∂v(qeB, θq̃

e
B0)

∂qeBℓ

∂qeBℓ

∂qeAℓ

+ θ
∂v(qeB, θq̃

e
B0)

∂q̃eB0

∂q̃eB0

∂qeAℓ

)
dqeAℓ

]

0 = −dpB(q
e)− 1

ϕ(ω∗
0)

2

(
ϕ(ω∗

0)
2 − ϕ′(ω∗

0)Φ(ω
∗
0)
) [

dpA(q
e)− dpB(q

e)−
(
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+θ
∂v(qeA, θq̃

e
A0)

∂q̃eA0

∂q̃eA0

∂qeAℓ

)
dqeAℓ +

(
∂v(qeB, θq̃

e
B0)

∂qeBℓ

∂qeBℓ

∂qeAℓ

+ θ
∂v(qeB, θq̃

e
B0)

∂q̃eB0

∂q̃eB0

∂qeAℓ

)
dqeAℓ

]
.

As qeBℓ = nℓ − qeAℓ for all ℓ,
∂qeB
∂qeAℓ

= −1, and
∂q̃eB0
∂qeAℓ

= −h0ℓ. Making these substitutions, multiplying

both sides of each by 1
dqeAℓ

, and grouping like terms yields

0 = −
(
2 +

ϕ′(ω∗
0)[1− Φ(ω∗

0)]

ϕ(ω∗
0)

2

)
dpA(q

e)

dqeAℓ

+

(
1 +

ϕ′(ω∗
0)[1− Φ(ω∗

0)]

ϕ(ω∗
0)

2

)
dpB(q

e)

dqeAℓ

+

(
1 +

ϕ′(ω∗
0)[1− Φ(ω∗

0)]

ϕ(ω∗
0)

2

)[
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB, θq̃

e
B0)

∂qeBℓ

+ θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eAℓ

+
∂v(qeB, θq̃

e
B0)

∂q̃eBℓ

)
h0ℓ

]
︸ ︷︷ ︸

=µ
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0 = −
(
1− ϕ′(ω∗

0)Φ(ω
∗
0)

ϕ(ω∗
0)

2

)
dpA(q

e)

dqeAℓ

+

(
1 +

ϕ′(ω∗
0)[1− Φ(ω∗

0)]

ϕ(ω∗
0)

2

)
dpB(q

e)

dqeAℓ

−
(
1− ϕ′(ω∗

0)Φ(ω
∗
0)

ϕ(ω∗
0)

2

)
µ.

The system can be rewritten in matrix form as −2− ϕ′(ω∗
0)[1−Φ(ω∗

0)]
ϕ(ω∗

0)
2 1 +

ϕ′(ω∗
0)[1−Φ(ω∗

0)]
ϕ(ω∗

0)
2

1− ϕ′(ω∗
0)Φ(ω∗

0)
ϕ(ω∗

0)
2 −2 +

ϕ′(ω∗
0)Φ(ω∗

0)
ϕ(ω∗

0)
2


︸ ︷︷ ︸

=M

( dpA(qe)
dqeAℓ

dpB(qe)
dqeAℓ

)
=

 −1− ϕ′(ω∗
0)[1−Φ(ω∗

0)]
ϕ(ω∗

0)
2

1− ϕ′(ω∗
0)Φ(ω∗

0)
ϕ(ω∗

0)
2

µ.

Note that

det(M) = 3 +
ϕ′(ω∗

0)[1− 2Φ(ω∗
0)]

ϕ(ω∗
0)

2
̸= 0,

so the system is solvable. Moreover, ϕ′(Ω∗
0) < 0 if and only if Φ(ω∗

0) > 1
2 , so det(M) > 0. The

comparative statics in Proposition 2 follow. For Proposition 1, the comparative statics are similarly

derived, but setting changes in platform B’s installed base to zero.

I prove the monotonicity and nonmonotonicity of the comparative statics without assuming dif-

ferentiability for a more general result. First I illustrate monotonicity. Without loss of generality,

consider expectations qeA ≤ qeB. Then, ω∗
0 ≥ Φ−1

(
1
2

)
. By Assumption 1(ii) and (iii), Φ−1

(
1
2

)
= 0.

Therefore,

pA(q
e)− pB(q

e) ≥ v(qeA, θq̃
e
A0)− v(qeB, θq̃

e
B0). (22)

Now suppose that expectations are such that q̃eA0 ≥ q̃eB0. By Assumption 3(iii), there exists a θ′ such

that for all θ ≥ θ′ the right-hand side of (22) is nonnegative, which implies that pA(q
e)−pB(q

e) ≥ 0.

To prove nonmonotonicity, define q̄ = max{q̃eA0, q̃
e
B0}. Now suppose that qej increases by one. Let

ηj < 0 and η−j > 0 denote the respective changes to q̃ej0 and q̃e−j0, where by construction ηj < 0

and η−j > 0 if and only if h0ℓ < 0 (when h0ℓ = 0, ηj = η−j = 0). It is sufficient that the values of

the network effects move nonmonotonically with market share:

v
(
qej + 1, θ(q̃ej0 + ηj)

)
≤ v(qej , θq̃

e
j0)

v
(
qe−j − 1, θ(q̃e−j0 + η−j)

)
≥ v(qe−j , θq̃

e
−j0).

Define θ′” as the minimum θ that satisfies both inequalities. It follows that the inequalities are also

satisfied for all θ ≥ θ′′. Setting θ∗(qe) = max{θ′, θ′′} in the case of Proposition 1 and θ∗∗(qe) =

max{θ′, θ′′} in the case of Proposition 2 completes the proof.
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Proof of Proposition 3.

Proof. For any fixed set of expectations qe, a change in θ requires that the relative hedonic price

of good A for the representative consumer

ω∗
0 = [pA(q

e)− v(qA, θq̃
e
A0)]− [pB(q

e)− v(qeB, θq̃
e
B0)]

remain constant. Otherwise, the marginal consumer moves and expectations are no longer fulfilled.

Moreover, platform j’s expected hedonic price, pj(q) − v(qej , θq̃
e
j0) cannot decrease given a change

in θ. Otherwise, pj(q
e) is not a maximizer, as it would imply the existence of a higher price p′j that

satisfies the equilibrium conditions.

Now, suppose that both platform A’s network and platform B’s network are H+. If θ increases,

then both v(qeA, θq̃
e
A0) and v(qeB, θq̃

e
B0) increase, so to keep the hedonic prices and relative hedonic

prices constant, pA(q
e) and pB(q

e) must both increase. By an analogous argument, if θ increases

but both platforms’ networks are H−, both prices must decrease.

Next, suppose that platform A’s network is H+ while platform B’s network is H−. Then, it follows

that pA(q
e) is increasing while pB(q

e) is decreasing. If a platform is H0, then it follows that its

price is unaffected by θ.

Proof of Corollary 1.

Proof. Corollary 1 follows from Propositions 1–3. Consider expectations qeA < qeB with q̃eA0 > q̃eB0.

By Lemma 2 and Assumption 3(iii), pA − pB is strictly increasing in θ. Therefore, there exists a

θ̄(qe) such that if θ > θ̄(qe), then in the equilibrium of the subgame, pA(q
e)qeA > pB(q

e)qeB.

Proof of Proposition 4.

Proof. Proposition 4 follows from an envelope theorem argument. Fix expectations at qe. The

platforms’ objectives are given by

npA[1− Φ(ω0)]

npBΦ(ω0).
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Differentiating each objective with respect to qeA0 and evaluating at p(qe) yields the expressions

npA(q
e)ϕ(ω∗

0)µ and −npB(q
e)ϕ(ω∗

0)µ, respectively, where µ is defined in the proof of Propositions

1 and 2. The remainder of the proof follows immediately.

Proof of Proposition 5.

Proof. Without loss of generality, consider platform B. Recall that

DB(pB, pA,q
e) =

L∑
ℓ=1

nℓΦ(ωℓ)

=⇒ 1

n
DB(pB, pA,q

e) =
L∑

ℓ=1

nℓ

n
Φ(ωℓ),

which by Lemma 2, can be rewritten as DB(pB, pA,q
e) = Φ(ω0). Therefore,

∂DB(pB, pA,q
e)

∂pB
= −nϕ(ω0),

so platform B’s elasticity is given by

EB = −npB

(
Φ(ω0)

ϕ(ω0)

)−1

.

By Assumption 1(iv), (Φ(ω0)/ϕ(ω0))
−1 is strictly decreasing in ω0. As v(qeB, θq̃

e
B0) is strictly in-

creasing in q̃eB0 and v(qeA, θq̃
e
A0) is strictly decreasing in q̃eB0, ω0 is increasing in q̃eB0 and q̃eB0 − q̃eA0,

completing the proof.

Proof of Lemma 3.

Proof. Recall the objectives in (16). At pA = p∗A and pB = p∗B, each objective in (16) is upper

semicontinuous. Given that c is defined over a compact space, a solution exists.

Proof of Proposition 6.
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Proof. Without loss of generality, consider platofrm A. The FOC with respect to cAyr is given by

pA(q
e(c∗))ϕ(ω∗

0)
∑

ℓ: yτ∈ℓ

[
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB, θq̃

e
B0)

∂qeBℓ

+θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB, θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
f(α) =

∂κ(c∗A)

∂cAyr

, (23)

where

f(α) =


αyτ∑

ys∈ℓ αys
if qeAℓ(c

∗) =
(
1 +

∑
ys∈ℓ αys (cjys−c−jys )∑

ys
αys

)
qejℓ

0 otherwise.

For statement (i), as θ → 0, the FOC becomes

pA(q
e(c∗))ϕ(ω∗

0)
∑

ℓ: yτ∈ℓ

(
∂v(qeA, 0)

∂qeAℓ

+
∂v(qeB, 0)

∂qeBℓ

)
f(α) =

∂κ(c∗A)

∂cAyr

.

At c = 0,

pA(q
e(0))ϕ(ω∗

0)
∑

ℓ: yτ∈ℓ

(
∂v(qeA, 0)

∂qeAℓ

+
∂v(qeB, 0)

∂qeBℓ

)
f(α) > 0

for at least one yr. By Assumption 2(iv), κ(0) → 0. By continuity, this holds for θ sufficiently

small. Define θ(qe) as the largest θ such that the inequality holds.

Statement (ii) follows from pA(q
e(c∗))ϕ(ω∗

0) > 0.

For statement (iii), consider all ℓ such that {ℓ : yr ∈ ℓ} = {ℓ : ys ∈ ℓ}. The corresponding FOCs

are

pA(q
e(c∗))ϕ(ω∗

0)
∑

ℓ: yτ∈ℓ

[
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB, θq̃

e
B0)

∂qeBℓ

+θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB, θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
f(α) =

∂κ(c∗A)

∂cAyr

,

pA(q
e(c∗))ϕ(ω∗

0)
∑

ℓ: yτ∈ℓ

[
∂v(qeA, θq̃

e
A0)

∂qeAℓ

+
∂v(qeB, θq̃

e
B0)

∂qeBℓ

+θ

(
∂v(qeA, θq̃

e
A0)

∂q̃eA0

+
∂v(qeB, θq̃

e
B0)

∂q̃eB0

)
h0ℓ

]
f(α) =

∂κ(c∗A)

∂cAys

.

The left-hand side of each FOC is identical except for f(α) Thus, the left-hand side of the FOC

for cAyr is greater than (less than) [equal to] the left-hand side of the FOC for cAys if and only if

αyr∑
yt∈ℓ

αyt

> (<) [=]
αys∑
yt∈ℓ

αyt

αyr > (<) [=]αys .

An analogous argument holds for platform B.
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Proof of Proposition 7.

Proof. Without utilizing Lemma 2, the FOC with respect to cAyr is given by

pA(q
e(c∗))

L∑
m=1

ϕ(ω∗
m)

∑
ℓ: ys∈ℓ

[
∂v(qeA, θq̃

e
Am)

∂qeAm

+
∂v(qeB, θq̃

e
Bm)

∂qeBm

+θ

(
∂v(qeA, θq̃

e
Am)

∂q̃eAm

+
∂v(qeB, θq̃

e
Bm)

∂q̃eBm

)
hmℓ

]
αys∑
yt∈ℓ αyt

≤
∂κ(c∗A)

∂cAyr

.

At c = 0, ω∗
m = ω∗

ℓ for all m, ℓ. It is sufficient to show that the left-hand side of the above is

nonpositive at c = 0:

L∑
m=1

∑
ℓ: ys∈ℓ

[
∂v(qeA, θq̃

e
Am)

∂qeAm

+
∂v(qeB, θq̃

e
Bm)

∂qeBm

+ θ

(
∂v(qeA, θq̃

e
Am)

∂q̃eAm

+
∂v(qeB, θq̃

e
Bm)

∂q̃eBm

)
hmℓ

]
αys∑
yt∈ℓ αyt

≤ 0.

For θ sufficiently large, it is sufficient that

L∑
m=1

∑
ℓ: ys∈ℓ

[
∂v(qeA, θq̃

e
Am)

∂q̃eAm

hmℓ

]
=
∑

ℓ: ys∈ℓ

L∑
m=1

[
∂v(qeA, θq̃

e
Am)

∂q̃eAm

hmℓ

]
≤ 0

Note that there exists a ε > 0 such that if
∑

m ̸=ℓ |hmℓ| − hℓℓ > ε, then for each ℓ,

L∑
m=1

[
∂v(qeA, θq̃

e
Am)

∂q̃eAm

hmℓ

]
≤ 0.

As this holds for each ℓ, it holds for all ℓ : y ∈ ℓ, proving the first statement.

To prove (i) and (ii), assume sufficiently strong in-group bias. Reversing the inequalities, an

identical argument as above follows, except if
∑

m̸=ℓ |hmℓ| − hℓℓ < −ε, then

L∑
m=1

[
∂v(qeA, θq̃

e
Am)

∂q̃eAm

hmℓ

]
> 0,

completing the proof.

Proof of Proposition 8.

Proof. This proof follows a nearly identical argument to that of Proposition 7. The FOC with

respect to cAyr is again given by (23). At c = 0, the left-hand side must be nonpositive. Assuming

θ sufficiently large, (23) simplifies to

L∑
m=1

ϕ(ω∗
m)

∑
ℓ: ys∈ℓ

(
∂v(qeA, θq̃

e
Am)

∂q̃eAm

+
∂v(qeB, θq̃

e
Bm)

∂q̃eBm

)
hmℓ ≤ 0.
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Define

Am = ϕ(ω∗
m)

(
∂v(qeA, θq̃

e
Am)

∂q̃eAm

+
∂v(qeB, θq̃

e
Bm)

∂q̃eBm

)
,

so the above can be rewritten as
∑L

m=1

∑
ℓ: ys∈ℓAmhmℓ. The argument then proceeds identically

to that of Proposition 7.

Proof of Proposition 9.

Proof. Without loss of generality, suppose that |h11| > · · · > |hLL| and hmℓ = h′ for all m ̸= ℓ.

Recall from Proposition 4 that

dπA(p(qe))
dqeAℓ

= npA(q
e)ϕ(ω∗

0)
[(

∂v(qeA,θq̃eA0)
∂qeAℓ

+
∂v(qeB ,θq̃eB0)

∂qeBℓ

)
+ θ

(
∂v(qeA,θq̃eA0)

∂q̃eA0
+

∂v(qeB ,θq̃eB0)
∂q̃eB0

)
h0ℓ

]
.

For θ sufficiently large and sufficiently strong out-group bias (
∑

m ̸=ℓ hℓm − |hℓℓ| < −ε for some

positive ε), profits are decreasing in qeAℓ if
∑L

m=1 hmℓ < 0.

By definition 5, hmℓ > 0 for all m ̸= ℓ and hℓℓ < 0 for all ℓ. Aggregating over all ℓ, profits are

maximized by minimizing
∑

ℓ qAℓhℓℓ. With the hℓℓ fixed, for every qeA, profits are maximized when

qA1 < qA2 < · · · < qAL. An analogous argument holds for platform B.

Proof of Proposition 10.

Proof. Suppose that K = 2, Ȳ = L, qe = EQe, and that θ is sufficiently large. As Ȳ = L, I

use traits and types interchangeably. As θ is sufficiently large, size effects can be ignored and

composition effects dominate. By Lemma 3, at least one SPE exists and is given by the solution

to the system of 2L equations.

Define h̄ = maxℓ,m hℓm and h = minℓ,m hℓm.

For (i), suppose that h̄− h < ε for a small positive ε. Consider the cultivation profile c∗ such that

c∗Aℓ > 0 and c∗Bℓ = 0 for all ℓ ∈ L1, while C∗
Aℓ = 0 and c∗Bℓ > 0 for all ℓ ∈ L2. Under c∗, qeA = n/2

and qeAℓ > nℓ/2 for all ℓ ∈ L1 and qeAℓ < nℓ/2 for all ℓ ∈ L2. Now, consider a unilateral deviation

by platform A to a profile c′, where all values are identical to c∗ except that cAℓ = ε′ > 0 for some

ℓ ∈ L2. By Assumption 2, if this deviation does not exist, there can be no deviation to a value

38



greater than ε′. The introduction of a user from L2 imposes a negative externality on all users

from L1. By Proposition 4, dπA(p(qe(c′)))
dqeAℓ

< 0 as hmℓ < 0 for all m ∈ L1 and qeAm > qeAℓ for each

m ∈ L1 and ℓ ∈ L2. The composition worsens for a strict majority of users and improves for a

small minority. As h̄− h < ε, the net effect is negative. Thus, there is no profitable deviation.

Now consider a unilateral deviation to a profile c′′, where all is identical to c∗ except that cAℓ = 0

for some ℓ ∈ L1. Then, q
e
Aℓ(c

′′) = nℓ/2 < qe(c∗). Moreover, q̃eAℓ(c
′′) < q̃eAℓ(c

∗) for all ℓ ∈ L1. Given

Assumption 2(iv), c′′ yields a strict decrease in platform A’s profits via a lower price due to poorer

composition and fewer users due to the loss of a cultivated trait. Hence, no such deviation exists.

By symmetry, a similar argument holds for platform B.

To prove uniqueness, consider any profile c ̸= c∗. Cases in which a platform targets a subset of a

partition are ruled out by the above. The only remaining candidate c is both platforms targeting the

same partition. However, if one platform deviates by targeting the alternate partition, it receives a

strict increase in profits through increased composition. The mathematical argument is analogous

to the one presented above.

For (ii), suppose group 1 is dominant (by Definition 6). Consider the profile c∗ with c∗jℓ > 0 for all

j and all ℓ ∈ L1. By symmetry, c∗Aℓ = c∗Bℓ for all ℓ, so qeA = qeB = n/2 and qeAℓ = qeBℓ = nℓ/2 for all

ℓ. A deviation by platform A to c′ in which all is identical except cAℓ < cBℓ for some ℓ ∈ L1. As

qeA(c
′) < qeA(c

∗), there is a negative size effect. For all type zm users, m ∈ L1, q̃
e
Am(c′) < q̃eAm(c∗).

Moreover, for each m /∈ L1, the net change q̃eAm(c′) − q̃eAm(c∗) implies (by Assumption 3) that

pA(q
e(c′)) < pA(q

e(c∗)). By group 1’s dominance, this implies a strict decrease in profits.

The only alternative deviation necessary to consider is platform A cultivating a type zm individual

with m ∈ L2. Again, by Definition 6, the negative externality imposed on group 1 dominates the

positive externality on group 2, implying a strict decrease in profits. Thus, there is no unilateral

deviation.

Proof of Proposition 11.

Proof. As in the text, if there is a single platform A, then a constant ξA and θ = 0 implies

that profits are maximized at p∗(0) = ξA + v(qeA, 0) where p∗(0) is p∗(θ) evaluated at θ = 0. In

equilibrium, qeA = n. Profits are np∗. Under J platforms, each platform j maximizes profits at price
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p∗j (0) = ξA + v(qej , 0). If qej < n, then p∗(0) > p∗j (0) for all j. Total profits across the J platforms

are
∑

j q
e
jp

∗
j (0) <

∑
j q

e
jp

∗(0) = np∗(0). By continuity, the inequality holds for small but positive

θ.

Proof of Proposition 12.

Proof. Suppose that H is sufficiently large and H consists of either in-group bias, out-group bias,

or grouping. Define ℓ as the type zℓ user with the lowest heterogeneity-weighted installed base

value in platform A.

A single platform A maximizes prices by setting

p∗(θ) =

{
ξA + v(n, θq̃eAℓ) if qeA = n

ξA + v(qeA, θq̃
e
Aℓ) if qeA < n.

If qeA < n, then creating a second platform with the remaining n− qeA users completes the proof. If

qeA = n, then by the construction of H, there must exist at least one type zℓ such that by removing

the type zℓ, p
∗(θ) increases. Then by the above case, creating at least one new platform for the

removed type(s) completes the proof.
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